• Title/Summary/Keyword: Air Back-Flushing

Search Result 6, Processing Time 0.022 seconds

A STUDY ON THE MICROBIAL CONTAMINATION OF DENTAL UNIT AND ULTRASONIC SCALER (덴탈유니트의 핸드피스 및 초음파 치석 제거기의 미생물 오염에 관한 연구)

  • Lee, Byung-Moon;Kim, Chang-Whe;Kim, Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.64-80
    • /
    • 1998
  • The risk of cross-contamination in dental clinic is very high. Those who are engaged in dental clinic are exposed to various microorganisms in saliva and blood of patient. Potential possibility of cross-contamination of patient to patient, patient to dentist, dentist to laboratory technician always exist, which is important in the view of public health. It is well known that microorganisms may cause cross-contamination by suck-back of microorganisms into the water supply line or air supply line of dental unit and sprayed back into the next patient's oral cavity. The majority of microorganisms coming from dental unit are water microorganisms from the main water supply which have colonized the tube within the units and multiplied in the relatively warm and stagnant conditions. The purpose of this study is to measure the extent of microbial contamination of dental unit and ultrasonic scaler, to evaluate that dental unit water supply is suitable for drinking water, and to assess the effect of flushing on reduction of microbial contamination of dental unit and ultrasonic scaler. In the first experiment, water samples(50ml) from 20 dental units and 10 ultrasonic scalers in Seoul National Univ. Hosp. were tested for the presence of coliform. The samples were filtered by membrane filtration technique.(Microfil system, Millipore Co. U. S. A.) The filter was then placed onto MacConkey agar plate and the plates with filter on it were incubated aerobically at $37^{\circ}C$ for 5 days. The colors and shapes of colonies were examined if those were coliform. To verify the presence of coliform, the colonies were inoculated into phenol red lactose broth and incubated aerobically at $37^{\circ}C$ for 2 days. The fomation of gas was observed. In the second experiment, water samples from 20 handpieces, 10 ultrasonic scalers and 30 A/W syringes after 0, 2, 4, 6 min. flushing respectively were taken. $200{\mu}l$ water samples were spreaded on Brain Heart Infusion agar plate and the plates were incubated aerobically at $37^{\circ}C$ for 5 days. The number of colony was counted. The results obtained were summarized as follows 1. The water from dental unit and ultrasonic scaler was not suitable for drinking water. 2. No coliform was founded in dental unit and ultrasonic scaler water supply. 3. The number of colony of dental unit and ultrasonic scaler was highest in the group of o min. flushing(p<0.05). 4. There was no statistically significant difference in the extent of microbial contamination among handpiece, ultrasonic scaler and A/W syringe (p>0.05). 5. The number of colony was lowest in the group of 4 min. flushing, but there was no statistically significant difference among 2, 4, 6 min. flushing groups.(p>0.05) 6. It is recommended to flush dental unit water line for 4 min. after use on each patient.

  • PDF

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.

Nitrogen and Phosphorus Removal in Long Term Pilot Plant Operation Using Submerged Hollow Fiber Membrane and Ferric Chloride (침지형 중공사막과 철염을 이용한 Pilot MBR 공정의 장기운전에 따른 질소, 인 제거 특성)

  • Cheong, Jin-Ho;Heo, Yong-Rok;Im, Jeong-Dae;Lee, Eui-Sin;Park, Myung-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1168-1173
    • /
    • 2005
  • Pilot scale vertical-type membrane bioreactor was operated to examine the effect of $FeCl_3$ injection on the removal of organics, nitrogen and phosphorous, and additionally trans-membrane pressure (TMP) was observed. The membrane type was hollow fiber membrane with pore size of $0.25\;{\mu}m$, and the material was polytetrafluoroethylene (PTFE). The membrane permeate was continuously removed by a pump under a constant flux ($25\;L/m^2/h$). Air back-flushing technique were adopted to reduce fouling. As a result, TMP was increased more slowly than that of the operation without air back-flushing, During long-term operation, approximately 310 days, the injection of $FeCl_3$ was effective not only in removing phosphorous chemically but also in reducing TMP increase. Furthermore, while the average COD and T-N concentration of the effluent without $FeCl_3$ injection was 14.3 mg/L and 6.0 mg/L respectively, that of effluent with $FeCl_3$ was 11.3 mg/L and 6.0 mg/L respectively, which confirmed the effects of $FeCl_3$.

Process Developmentof Wastewater Contaning Silicon Fine Particles by Ultrafiltration for Water Reuse (한외여과에 의한 Si 미립자 함유폐수 재이용 공정개발)

  • 전재홍;함용규;이석기;남석태;최호상
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.87-88
    • /
    • 1998
  • 1. 서론 : 반도체 제조공정중의 공정폐수로 발생되는 Si 미립자 함유폐수는 많은 양의 초순수와 1차세정 폐수로 방류되므로 유가물인 Si가 상당량 함유되어 있다. 이러한 폐수의 재이용을 위해 본 연구에서는 미립자 Si를 농축, 회수하고 양질의 처리수를 얻고자 한외여과막 분리공정을 적용하였고, 한외여과막 공정의 조업변수를 평가하여 air back flushing에 의한 막세척 효율 및 fouling 제어특성, 각각의 membrane이 갖는 분획분자량 특성에 따른 처리수 수질 및 flux 비교를 통해 scale up할 경우 필요한 조업변수를 얻고자 실시하였다.

  • PDF

Performance of High Temperature Filter System for Radioactive Waste Vitrification Plant (방사성폐기물 유리화 플랜트 고온여과시스템의 성능 특성)

  • Seung-Chul, Park;Tae-Won, Hwang;Sang-Woon, Shin;Jong-Hyun, Ha;Hey-Suk, Kim;So-Jin, Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.

  • PDF

Application of Rainwater Harvesting System Reliability Model Based on Non-parametric Stochastic Daily Rainfall Generator to Haundae District of Busan (비모수적 추계학적 일 강우 발생기 기반의 빗물이용시설 신뢰도 평가모형의 부산광역시 해운대 신시가지 적용)

  • Choi, ChiHyun;Park, MooJong;Baek, ChunWoo;Kim, SangDan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.634-645
    • /
    • 2011
  • A newly developed rainwater harvesting (RWH) system reliability model is evaluated for roof area of buildings in Haeundae District of Busan. RWH system is used to supply water for toilet flushing, back garden irrigation, and air cooling. This model is portable because it is based on a non-parametric precipitation generation algorithm using a markov chain. Precipitation occurrence is simulated using transition probabilities derived for each day of the year based on the historical probability of wet and dry day state changes. Precipitation amounts are selected from a matrix of historical values within a moving 30 day window that is centered on the target day. Then, the reliability of RWH system is determined for catchment area and tank volume ranges using synthetic precipitation data. As a result, the synthetic rainfall data well reproduced the characteristics of precipitation in Busan. Also the reliabilities of RWH system for each of demands were computed to high values. Furthermore, for study area using the RWH system, reduction efficiencies for rooftop runoff inputs to the sewer system and potable water demand are evaluated for 23%, 53%, respectively.