• 제목/요약/키워드: Air/fuel control

검색결과 477건 처리시간 0.033초

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구 (A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port)

  • 노병준;강신재;김원태
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

HCCI 디젤엔진의 배기특성에 미치는 예혼합 연료의 영향 (Effect of Premixed Fuels Charge on Exhaust Emission Characteristics of HCCI Diesel Engine)

  • 김명윤;윤영훈;황석준;김대식;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.182-189
    • /
    • 2005
  • In order to investigate the effect of premixed gasoline, diesel fuel, and n-heptane charges on the combustion and exhaust emission characteristics in a direct injection (DI) diesel engine, the experimental studies are performed. The premixed fuels are injected into the premixing chamber that installed upstream of the intake port in order to minimize the inhomogeneity effect of premixed charge. The injection nozzle for directly injected fuel is equipped in the center of the combustion chamber. The air temperature control system is equipped in the intake manifold to examine the effect of air temperature. The experimental results of this study show premixing fuel is effective method to reduce the NOx and soot emissions of diesel engine. NOx emissions are linearly decreased with increasing premixed ratio for the three kinds of premixed fuels. The heating of intake air $(80^{\circ}C)$ reduced the deterioration of BSFC in high premixed ratio, because it promotes evaporation of premixed diesel droplet in the premixing chamber.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

우리나라 대기오염 역사, 규제의 변천, 현행 규제제도의 개선방안 (Air Pollution History, Regulatory Changes, and Remedial Measures of the Current Regulatory Regimes in Korea)

  • 김동술
    • 한국대기환경학회지
    • /
    • 제29권4호
    • /
    • pp.353-368
    • /
    • 2013
  • All Koreans had suffered heavily from municipal and industrial air pollution problems since 1960's to 1980's. However the levels of $SO_2$, CO, and Pb have been dramatically decreased since 1990's due to various air pollutants' reduction policies under the provisions of the 1978 Environmental Preservation Act and the 1990 Air Quality Preservation Act such as increasing the supply of low-sulfur fuel, the use of cleaner fuel, no use of solid fuel, and so on. Even though the national ambient air quality standard has been strengthened to protect public health and welfare, the levels of $NO_2$, $O_3$, and $PM_{10}$ frequently exceed the corresponding standards; for example, only 4 stations (1.7%) out of 239 nationwide monitoring stations satisfied the 24-hr based PM10 standard in 2011. Moreover, upto the present time, since there are serious underlying policies of economism and growth-first which can not be solely solved by the environmental laws, it is difficult to root out undesirable social evils such as public indifference, passive academic activities, complacent government bureaucracy, insufficient social responsibility of enterprise, and radical activities of environmental groups. The paper initially reviewed air pollution history of Korea with surveying various environmental factors affecting in/out-door air pollution in the past Korea. Further this study extensively investigated legal and political changes on air pollution control and management for the last 50 years, and then intensively discussed the present environment-related laws and policies unreasonably enforced in Korea. It is necessary to practically revise many outdated legal policies based on health-oriented thinking and on our current economic levels as well.

디젤 예혼합압축착화엔진에서 주연료 분사 후 점화 연료 분사 방법을 통한 점화 촉진과 배기가스 개선 효과 (Effects of Pilot Injection Method Following the Main Injection on Ignition Promotion and Exhaust Gas Reduction in a Diesel-Fueled HCCI Engine)

  • 국상훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • Diesel-Fueled HCCI(Homogeneous Charge Compression Ignition) Engine is an advanced combustion process explained as a premixed charge of diesel fuel and air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Also PM could be reduced by the premixed combustion and no fuel-rich zones. But HCCI couldn't be realized because of the difficulties in vaporizing the diesel, control of combustion phase directly. To solve these problems, new fuel injection strategy, explained as the pilot fuel injection to promote ignition near TDC following the main fuel injection at the extremely advanced timing, is applied during the compression ratio is varied from 18.9:1 to 27.7:1 This is not a pilot fuel to promote the ignition but also the direct control method of the combustion phase. Experimental result shows the pilot fuel injection promote the ignition and the compression ignition of the HCCI engine is achieved as compression ratio becomes higher. Also there is an optimal pilot fuel injection timing for the HCCI combustion. NOx is reduced more than 90% compared to DI-Diesel case but PM and THC emission needs more investigation.

  • PDF

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

흡입공기량 간접계측방식의 전자제어화 Motorcycle 엔진 출력 특성 (Output Characteristics Using Indirect Measurement of Air Flow in a Motorcycle Engine)

  • 정태균;채재우
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.87-95
    • /
    • 2005
  • Most of the motorcycle engines have used carburetors in the fuel system, because of its simple structure and reliability but the fuel economy and the emissions of those engines are bad when we compared with automobile engines .To meet with the tighten emission regulations and the higher requirements for fuel economy, the application of the carburetor on the motorcycle engines would be limited. Therefore, it is important to develope a ECU control system for motorcycle engines. Since the fuel injection system is expensive, it is necessary to decrease the cost of ECU system for motorcycle engines, but the accuracy of the ECU control system should be increased as high as possible. In this paper, we studied about the AFS characteristics of motorcycle engine controled by indirect method.

Compensation Logics of Controller in Korean Standard Super Critical Once Through Boiler

  • Kim, Eun-Gee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.65.2-65
    • /
    • 2001
  • There are not only lots of controllers such as UMC(Unit Master Controller), BMC(Boiler Master Controller), Fuel Flow controller, Air flow controller, Feed water flow controller, S/H R/H Temperature controller and so on, but also compensation controller such as BTU compensator, Fuel/Water ratio controller and O2 Co controller to take automatic control in the super critical once through boiler. It is important to make complete automation of boiler to use the compensation controller like BTU compensator. For example, In case of some boiler condition, operator has to change combustion parameter for changing the coal, on the contrary BTU compensator can calculate set value of the fuel flow and reset the fuel flow demand by itself. This paper shows us the logic and instruction regarding compensation controller of boiler that can be operated automatically.

  • PDF

유동 제어 장치를 이용한 상용차량의 항력저감 연구 (Study on drag reduction of commercial vehicle using flow control device)

  • 김성호;김정재
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.8-13
    • /
    • 2023
  • The primary challenge in improving fuel efficiency and reducing air pollution for commercial vehicles is reducing their aerodynamic drag. Various flow control devices, such as cab-roof fairing, gap fairing, cab extender, and side skirt have been introduced to reduce drag, however, the drag reduction effect and applicability are different depending on each commercial vehicle model. To evaluate the fuel consumption of heavy vehicles, a comprehensive research approach, including drag force measurement, flow field analysis is required. This study investigated the effect of a cab extender, which installed rear region of cab, on a drag coefficient of commercial vehicle through wind tunnel experiments and CFD. The results showed that the cab extender significantly modified the flow structure around the vehicle, leading to 8.2% reduction in drag coefficient compared to the original vehicle model. These results would provide practical application for enhancing the aerodynamic performance and fuel efficiency of heavy vehicle.