• Title/Summary/Keyword: Air/Ground Temperatures

Search Result 76, Processing Time 0.027 seconds

Effects of Sowing Method and Summer Management on Stubbli Carbohydrate Reserves and Microclimate of Orchargrass Meadow (파종방법 및 여름철 관리가 Orchargrass채초지의 그루터기 저장탄수화물 함량 및 미기상에 미치는 영향)

  • 권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 1992
  • This experiment was designed to gain information on factors affecting stubble death of orchardgrass (Dactylis glomerata L.) during the first rainy season. According to the experimental plan, the effects of sowing methods, drainages and cutting dates on the stubble carbohydrate content of orchardgrass, available soil moisture content of experimental plots, temperatures at the ground level and in the soil, and relative light intensity and humidity at the base of orchardgrass canopy were measured during the rainy season. The carbohydrate content of orchardgrass was sharply decreased to 2.9 % at 3rd day after cutting in the plots cut before rainy season and a gradural recovery was noted following the sharp reduction, but in the plots cut after rainy season, orchardgrass showed 5.5% of carbohydrate content before cutting and 3.0% at the 3rd day after cutting. The same pattern in both carbohydrate reduction and recovery was found between two cutting treatments. The available soil moisture content in the plots cut before rainy season was slightly higher than that in the plots cut after rainy season. But after the rainy season, the available soil moisture content in the plots cut after rainy season was higher than that in the plots cut before rainy season. Soil temperature at lOcm depths in the plots cut before rainy season was higher than that in the plots cut after rainy season. Daily maximum air temperature at the ground level in the plots cut before rainy season was higher than that in the plots cut after rainy season and changeable. Relative humidity at the ground level was below 70% in the plots cut before rainy season, but 75 to 90 % was observed in the plots cut after rainy season. Relative light intensity at the ground level in the plots cut before rainy season was much higher, recorded 50 to 90 %, than that in the plots cut after rainy season showing less than 10%. The results of this study suggest that the stubble death of orchardgrass during the rainy season is due to plant diseases influenced by a decrease of light penetration and increase of relative humidity at the base of the grass canopy.

  • PDF

Changes in Temperature and Light Distribution in the Rice Crop Canopy at the Different Growth Stages (수도군락내(水稻群落內) 온도(溫度) 및 광분포(光分布)의 시기별(時期別) 변화(變化))

  • Lee, Jeong-Taek;Jung, Yeong-Sang;Ryu, In-Soo;Kim, Byung-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 1984
  • To find out the differences in micro-meteorological changes in the rice plant canopy at the different growing stages, Seokwang-byo, a high yielding variety, was cultivated with three planting densities of 50, 80 and 110 hills per $3.3m^2$ in 1982, and Seokwangbyo and Chucheong-byo, a local variety, were planted with a density of 80 hills per $3.3m^2$. Air temperature in plant canopies, water and soil temperatures were continuously monitored throughout the growing period. The relationship between solar radiation interception and leaf area indices at different height in the canopy also was studied. The results were as follows: 1. Air temperature in the densely planted canopy was 1 to $1.5^{\circ}C$ higher than that in the sparsely planted one at the early growing stage, but was inverted after 60 days of transplanting. The vertical distribution of temperature in the canopies showed that air temperature at 10 cm height from the ground was higher than that at 30 cm height. The temperature inversion occurred showing lower temperature at the 10 cm height than at the 30 cm height. 2. The highest temperature of a day in the canopy occurred at 14:00 to 15:00 Korean Standard Time same as that of air temperature, but approached to the solar noon time as the plants grew thick. 3. The air temperature in the canopy became higher than water temperature when the leaf area indices were 4.6 for Chucheongbyo and 5.2 for Seokwangbyo, and the light penetration ratios were 40 percents. 4. Light extinction coefficients of the 50 to 70 cm layer of the canopies were 0.3 to 0.5 but decreased at the lower layers. 5. Albedo of the canopies was 0.4 in the morning and evening while that was about 0.25 at noon. The difference in albedo between Seokwangbyo and Chucheongbyo could be recognized with the difference in leaf structure.

  • PDF

Prediction of Chinese Cabbage Yield as Affected by Planting Date and Nitrogen Fertilization for Spring Production (정식시기와 질소시비 수준에 따른 봄배추의 생육량 추정)

  • Lee, Sang Gyu;Seo, Tae Cheol;Jang, Yoon Ah;Lee, Jun Gu;Nam, Chun Woo;Choi, Chang Sun;Yeo, Kyung-Hwan;Um, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.271-275
    • /
    • 2012
  • The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. The continuous rise in temperature presents a challenge in growing certain horticultural crops. Chinese cabbage, one most important cool season crop, may well be used as a model to study the influence of climate change on plant growth, because it is more adversely affected by elevated temperatures than warm season crops. This study examined the influence of transplanting time, nitrogen fertilizer level and climate parameters, including air temperature and growing degree days (GDD), on the performance of a Chinese cabbage cultivar (Chunkwang) during the spring growing season to estimate crop yield under the unfavorable environmental conditions. The chinese cabbage plants were transplanted from Apr. 8 to May 13, 2011 when 3~4 leaves were occurred, at internals of 7 days and cultivated with 3 levels of nitrogen fertilization. The data from plants transplanted on Apr. 22 and 29, 2012 were used for the prediction of yield as affected by planting date and nitrogen fertilization for spring production. In our study, plant dry weight was higher when the seedlings were transplanted on 15th (168 g) than on 22nd (139 g) of April. There was no significant difference in the yield when plants were grown with different levels of nitrogen fertilizer. The values of correlation coefficient ($R^2$) between GDD and number of leaves, and between GDD and dry weight of the above-ground plant parts were 0.9818 and 0.9584, respectively. Nitrogen fertilizer did not provide a good correlation with the plant growth. Results of this study suggest that the GDD values can be used as a good indicator in predicting the top biomass yield of Chinese cabbage.

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

An Open Top Chamber for Forage Maize to Study the Effect of Elevated Temperature by Global Warming

  • Min, Chang-Woo;Khan, Inam;Kim, Min-Jun;Yoon, Il-Kyu;Jung, Jeong Sung;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.183-188
    • /
    • 2021
  • The increase in temperature due to climate warming is predicted to affect crop yields in the future. Until now, various types of OTC (open top chamber) that simulate the future climate condition have been developed and used to study the effect of temperature increase due to global warming on maize growth. However, in most OTCs, high equipment and maintenance costs were required to artificially increase the temperature. This study was carried to develop a cost-effective and simple OTC suitable for climate warming experiments for forage maize. Three octagonal OTCs with a height of 3.5 m × a diameter of 4.08 m and a partially covered top were constructed. The lower part of OTC covered film was opened at a height of 26 cm (OTC-26), 12 cm (OTC-12) from the ground surface, or not opened (0 cm, OTC-0). Mean air temperatures during the daytime on a sunny day in OTC-0, OTC-12 and OTC-26 increased to 3.23℃, 1.33℃, and 0.89℃, respectively, compared to the ambient control plot. For a pilot test, forage maize, 'Gwangpyeongok' was grown at OTCs and ambient control plots. As a result, in the late maize vegetative growth phase (July 30), the plant height was increased more than 45% higher than the ambient control plot in all OTC plots, and the stem diameter also increased in all OTC plots. These results indicate that it is possible to set the temperature inside the OTC by adjusting the opening height of the lower end of the OTC, and it can be applied to study the response of forage maize to elevated temperature. An OTC, with its advantages of energy free, low maintenance cost, and simple temperature setting, will be helpful in studying maize growth responsiveness to climate warming in the future.

A Development of Automation System and a Way to use Solar Energy System Efficiently in Greenhouse(1) - Study on temperature variation of soil heating in greenhouse - (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(1) - 시설재배시 지중가온의 온도변화 연구 -)

  • 김진현;김철수;명병수;최중섭;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 1998
  • The greenhouse temperature controls in general have been managed by the above-ground part environment, But the temperature of root zone was known very important factor for the 9rofth and the yield of vegetables in greenhouse. The purpose of this study is to develop a good method for cultivation using solar energy which can apply warming soil and to develop the greenhouse soil temperature automatic control system. Followings are summary of this study:1 When the greenhouse inner temperature changes were about 24$^{\circ}C$ during a day in October, the temperature of non-warmed soil was differenced 6$^{\circ}C$ in the depth 10cm and 3$^{\circ}C$ in the depth 20cm. 2. When water supply temperature was kept at 40, 50 and 6$0^{\circ}C$, the lowest soil temperature in the depth of 10cm is 2$0^{\circ}C$ and that of 20cm was 23$^{\circ}C$. and when the water supply temperature was over 4$0^{\circ}C$, the space heating temperature did not affect the temperature variation of soil. 3. In comparison with conditions of the warmed and non-warmed soil, when the water supply temperature is 28$^{\circ}C$, soil temperatures had the high temperature of 4$0^{\circ}C$~7$^{\circ}C$ in the depth of 10cm to 20 cm. 4. The line of boundary area was appeared in the depth of 15~20cm, 13~19cm and 12~17cm. when the water supply temperature was 4$0^{\circ}C$, 5$0^{\circ}C$ and 6$0^{\circ}C$. 5. When th inner greenhouse air temperature is maintained over 11$^{\circ}C$ and the water supply temperature is supported 28$^{\circ}C$, the lowest temperature is kept up over 2$0^{\circ}C$.

  • PDF