• Title/Summary/Keyword: Aiding methods

Search Result 53, Processing Time 0.02 seconds

Clustered Microcysts Detected on Breast US in Asymptomatic Women (무증상 여성의 유방초음파에서 발견된 군집 미세낭종)

  • Hyun Jin Kim;Jin Hwa Lee;Young Mi Park;Kyungjae Lim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.3
    • /
    • pp.676-685
    • /
    • 2023
  • Purpose To investigate the incidence, outcomes, and imaging characteristics of clustered microcysts detected on breast US in asymptomatic women, and suggest appropriate management guidelines. Materials and Methods We identified and reviewed the lesions recorded as "clustered microcysts" on breast US performed in asymptomatic women between August 2014 and December 2019. The final diagnosis was based on pathology and imaging follow-up results for at least 12 months. Results The incidence was 1.5% and 100 patients with 117 lesions were included. Among 117 lesions, 3 (2.6%), 2 (1.7%), and 112 (95.7%) were malignant, high-risk benign, and benign lesions, respectively. The malignant lesions included two cases of ductal carcinoma in situ and one invasive ductal carcinoma. Two of them were assessed as category 4, showing mammographic suspicious microcalcifications and internal vascularity on Doppler US. The remainder was a false negative case and showed echo pattern change on the 12-month follow-up US. Conclusion The incidence of clustered microcysts on breast US in asymptomatic women was 1.5% and malignancy rate was 2.6% (3 of 117). Knowledge of outcomes and imaging features of benign and malignant clustered microcysts may be helpful for radiologists, thereby aiding categorization and management recommendations.

Analysis of the major factors of influence on the conditions of the Intensity Modulated Radiation Therapy planning optimization in Head and Neck (두경부 세기견조방사선치료계획 최적화 조건에서 주요 인자들의 영향 분석)

  • Kim, Dae Sup;Lee, Woo Seok;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Purpose : To derive the most appropriate factors by considering the effects of the major factors when applied to the optimization algorithm, thereby aiding the effective designing of a ideal treatment plan. Materials and Methods : The eclipse treatment planning system(Eclipse 10.0, Varian, USA) was used in this study. The PBC (Pencil Beam Convolution) algorithm was used for dose calculation, and the DVO (Dose Volume Optimizer 10.0.28) Optimization algorithm was used for intensity modulated radiation therapy. The experimental group consists of patients receiving intensity modulated radiation therapy for the head and neck cancer and dose prescription to two planned target volume was 2.2 Gy and 2.0 Gy simultaneously. Treatment plan was done with inverse dose calculation methods utilizing 6 MV beam and 7 fields. The optimal algorithm parameter of the established plan was selected based on volume dose-priority(Constrain), dose fluence smooth value and the impact of the treatment plan was analyzed according to the variation of each factors. Volume dose-priority determines the reference conditions and the optimization process was carried out under the condition using same ratio, but different absolute values. We evaluated the surrounding normal organs of treatment volume according to the changing conditions of the absolute values of the volume dose-priority. Dose fluence smooth value was applied by simply changing the reference conditions (absolute value) and by changing the related volume dose-priority. The treatment plan was evaluated using Conformal Index, Paddick's Conformal Index, Homogeneity Index and the average dose of each organs. Results : When the volume dose-priority values were directly proportioned by changing the absolute values, the CI values were found to be different. However PCI was $1.299{\pm}0.006$ and HI was $1.095{\pm}0.004$ while D5%/D95% was $1.090{\pm}1.011$. The impact on the prescribed dose were similar. The average dose of parotid gland decreased to 67.4, 50.3, 51.2, 47.1 Gy when the absolute values of the volume dose-priority increased by 40,60,70,90. When the dose smooth strength from each treatment plan was increased, PCI value increased to $1.338{\pm}0.006$. Conclusion : The optimization algorithm was more influenced by the ratio of each condition than the absolute value of volume dose-priority. If the same ratio was maintained, similar treatment plan was established even if the absolute values were different. Volume dose-priority of the treatment volume should be more than 50% of the normal organ volume dose-priority in order to achieve a successful treatment plan. Dose fluence smooth value should increase or decrease proportional to the volume dose-priority. Volume dose-priority is not enough to satisfy the conditions when the absolute value are applied solely.

Light-Chain Cardiac Amyloidosis: Cardiac Magnetic Resonance for Assessing Response to Chemotherapy

  • Yubo Guo;Xiao Li;Yajuan Gao;Kaini Shen;Lu Lin;Jian Wang;Jian Cao;Zhuoli Zhang;Ke Wan;Xi Yang Zhou;Yucheng Chen;Long Jiang Zhang;Jian Li;Yining Wang
    • Korean Journal of Radiology
    • /
    • v.25 no.5
    • /
    • pp.426-437
    • /
    • 2024
  • Objective: Cardiac magnetic resonance (CMR) is a diagnostic tool that provides precise and reproducible information about cardiac structure, function, and tissue characterization, aiding in the monitoring of chemotherapy response in patients with light-chain cardiac amyloidosis (AL-CA). This study aimed to evaluate the feasibility of CMR in monitoring responses to chemotherapy in patients with AL-CA. Materials and Methods: In this prospective study, we enrolled 111 patients with AL-CA (50.5% male; median age, 54 [interquartile range, 49-63] years). Patients underwent longitudinal monitoring using biomarkers and CMR imaging. At follow-up after chemotherapy, patients were categorized into superior and inferior response groups based on their hematological and cardiac laboratory responses to chemotherapy. Changes in CMR findings across therapies and differences between response groups were analyzed. Results: Following chemotherapy (before vs. after), there were significant increases in myocardial T2 (43.6 ± 3.5 ms vs. 44.6 ± 4.1 ms; P = 0.008), recovery in right ventricular (RV) longitudinal strain (median of -9.6% vs. -11.7%; P = 0.031), and decrease in RV extracellular volume fraction (ECV) (median of 53.9% vs. 51.6%; P = 0.048). These changes were more pronounced in the superior-response group. Patients with superior cardiac laboratory response showed significantly greater reductions in RV ECV (-2.9% [interquartile range, -8.7%-1.1%] vs. 1.7% [-5.5%-7.1%]; P = 0.017) and left ventricular ECV (-2.0% [-6.0%-1.3%] vs. 2.0% [-3.0%-5.0%]; P = 0.01) compared with those with inferior response. Conclusion: Cardiac amyloid deposition can regress following chemotherapy in patients with AL-CA, particularly showing more prominent regression, possibly earlier, in the RV. CMR emerges as an effective tool for monitoring associated tissue characteristics and ventricular functional recovery in patients with AL-CA undergoing chemotherapy, thereby supporting its utility in treatment response assessment.