• Title/Summary/Keyword: Agrobacterium-mediated Transformation

Search Result 349, Processing Time 0.034 seconds

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.

Improved Transformation of the Filamentous Fungus Aspergillus niger Using Agrobacterium tumefaciens

  • Park, Seung-Moon
    • Mycobiology
    • /
    • v.29 no.3
    • /
    • pp.132-134
    • /
    • 2001
  • Since it is known that Agrobacterium tumefaciens, which has long been used to transform plants, can transfer the T-DNA to yeast Saccharomyces cerevisiae during tumourigenesis, a variety of fungi were subjected to transformation to improve their transformation frequency. In this study, I report the A. tumefaciens-mediated transformation of filamentous fungus Aspergillus niger. Transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator as a selectable marker, led to the selection of $50{\sim}100$ hygromycin B-resistant transformants per $1{\times}10^7$ conidia of A. niger. This efficiency is improved $10{\sim}20$ fold more than reported elsewhere. In order to avoid the difficulties in selection transformant from the over-growing non-transformant, I used top agar containing 900 ${\mu}g/ml$ of hygromycin. Genomic PCR and Southern analysis showed that all transformants contained single T-DNA insert per fungal genome. This technique offers an easier and more efficient method than that of using protoplast.

  • PDF

Agrobacterium-mediated transformation of Lycopersicon esculentum (cv. MicroTom) with two pathogen-induced hot pepper transcription factors

  • Seong, Eun-Soo;Oh, Sang-Keun;Eunsook Chung;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.79.1-79
    • /
    • 2003
  • Two pathogen-induced hot pepper transcription factors (CaNACl and CapIfl) were introduced into‘MicroTom’tomato by Agrobacterium tumefaciens-mediated transformation. We used to nptII containing kanamycin resistance gene as a selection marker. Both transformed and non-transformed plants were transferred to pot after rooting test in vitro. To approximate the levels of caNACl transcript in leaves of wild-type and transgenic plants, RNA blots were hybridized with double-stranded full-length CaNACl probe at moderate stringency, Although the relative signal strength for hybridization fluctuated among the samples on different blots, transgenic plant lines N-1, N-2 and N-3 consistently displayed increased levels of CaNACl transcript relative to other transgenic lines and wild-type plants. Of all the transgenic lines examined, line N-7 had the least amount of CaNACl transcript. Role of these transcription factors in pathogen defense will be examined by overexpression in tomato.

  • PDF

Agrobacterium-mediated transformation of Eleutherococcus senticosus with the squalene synthases gene derived from panax ginseng

  • Seo, Jin-Wook;Jeong, Jae-Hun;Han, Sung-Tai;Lee, Hak-Sung;Choi, Yong-Eui;Shin, Cha-Gyun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.145.3-146
    • /
    • 2003
  • Transgenic Eleutherococcus senticosus plants were prepared by introducing the genes for squalene synthase (SQS), hygromycin phosphotransferase (HPT) and green fluorescent Protein (GFP) through Agrobacterium-mediated transformation. The enzyme, SQS, represents a putative branch point in the isoprenoid pathway capable of diverting carbon flow specifically to the biosynthesis of phytosterol and oleanolic acid. The full SQS gene was isolated from P. ginseng roots. Early globular embryo clusters developed from embryogenic callus were used as the explant source. (omitted)

  • PDF

Agrobacterium-Mediated Transformation of Phalaenopsis by Using Protocorm-Like Body (Protocorm-like body를 이용한 호접란 형질전환 연구)

  • Hur, Yeon-Jae;Kim, Eun-Young;Yang, Won-Tae;Lee, Young-Byoung;Lee, Jae-Hun;Jung, Young-Soo;Nam, Jae-Sung;Yun, Dae-Jin;Yi, Ki-Hwan;Kim, Doh-Hoon
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.378-383
    • /
    • 2009
  • Agrobacterium tumefaciens-mediated transformation procedure for the phalaenopsis orchid, established by using Protocorm-like bodies (PLBs), was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. PLBs obtained from the axillary bud of a peduncle were maintained on a hyponex medium supplemented with 1 g/l of activated charcoal, 30 g/l of sucrose and 0.1 mg/l thiamine. The multiplication rate of PLBs was about 90% in case of subculture PLBs to be cut transversely into 1/3 part from top position. The PLBs were inoculated with Agrobacterium strain EHA105 harboring both $\beta$-glucuronidase (GUS) and hygromycin-resistant genes for 20 minutes after dipping treatment. Transformation efficiency was the highest with a Agrobacterium culture medium and dipping treatment of O.D. 0.8. Newly induced PLBs were put on selection medium containing 1 mg/l hygromycin for 2 months. Hygromycin-resistant phalaenopsis plants that regenerated after the selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by PCR and Southern blot using GUS specific primers and probe.

Factors Influencing Efficient Agrobacterium-mediated Transformation of Panicum spp. (Agrobacterium법에 의한 Panicum속 식물들의 효과적인 형질전환에 영향을 미치는 요인)

  • Seo, Mi-Suk;Takahara, Manabu;Takamizo, Tadashi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Molecular techniques such as genetic transformation are powerful tools that can be used for the genetic modification of warm-season grasses. The P. meyerianum with high regeneration ability was used for establishing an Agrobacterium-mediated transformation system. We investigated various factors affecting Agrobacterium infection by examining GUS gene expression of pCAMBIA1304 vector. Among various concentration of acetosyringone and betaine tested for inoculation and co-cultivation, 10 mg/L acetosyringone and 60 mg/L betaine resulted in the highest transformation frequency in terms of GUS expression. The calli of 4 species of Panicum spp. with excellent tissue culture response were inoculated with Agrobacterium under the optimal infection conditions. The high activity of GUS gene was observed in all species and hygromycin-resistant calli expressing GFP were obtained in P. meyerianum, P. longijubatum, P. stapfianum and guineagrass Noh-PL1. Co-cultivated calli were transferred onto the selection medium containing hygromycin, and the hygromycin resistant calli were selected after 3 months. Hygromycin-resistant plantlets were then successfully regenerated from the calli and grown in a greenhouse. We confirmed stable insertion of hpt gene among the hygromycin-resistant plantlets of P. meyerianum by PCR analysis.