• Title/Summary/Keyword: Agro-meteorological data

Search Result 76, Processing Time 0.03 seconds

Internet-based RAMINS II as a Future Communication Framework for AgroMeteorological Information in Asia (아시아 지역 농업기상정보 공유를 위한 인터넷기반 기상정보 연동시스템)

  • Byong-Lyol Lee;G. Ali Kamali;Wang Shili
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • All the countries in RA II (Asia Region in WMO) welcome the establishment of a Web site dedicated to agricultural meteorology, because it is believed that the best way to improve and speed up the flow of information is the use of the Internet and the establishment of a Web site. In providing recommendation for the promotion and improvement of the AgroMeteorological service in RA II, a couple of key suggestions were proposed: (a) Exchanges of data and AgroMeteorological knowledge between member countries and between RAs, (b) Exchanges of experts between member countries as a necessary way to share the knowledge, and (c) Joint research between member countries to solve common problems in AgroMeteorological affairs. In order to meet the above requirements for RA II, an AgroMeteorological information network will be the most critical and dynamic aspect in sustainable agriculture in this region. In addition, the establishment of a Core AgroMeteorological station, recommended by CAgM of WMO, will require its own information sharing systems for communication among member countries. Inevitable use of information technologies (IT) such as information networks, databases, simulation models, GIS, and RS for regional impact assessment of environmental change on AgroEcosystem will be enforced. Thus, the regional Internet-based Agrometeorological information network has been in place since 1999, though all contributions to it have been volunteered by individuals, institutes, universities, etc.

Quality Control of Agro-meteorological Data Measured at Suwon Weather Station of Korea Meteorological Administration (기상청 수원기상대 농업기상 관측요소의 품질관리)

  • Oh, Gyu-Lim;Lee, Seung-Jae;Choi, Byoung-Choel;Kim, Joon;Kim, Kyu-Rang;Choi, Sung-Won;Lee, Byong-Lyol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • In this research, we applied a procedure of quality control (QC) to the agro-meteorological data measured at the Suwon weather station of Korea Meteorological Administration (KMA). The QC was conducted through six steps based on the KMA Real-time Quality control system for Meteorological Observation Data (RQMOD) and four steps based on the International Soil Moisture Network (ISMN) QC modules. In addition, we set up our own empirical method to remove erroneous data which could not be filtered by the RQMOD and ISMN methods. After all these QC procedures, a well-refined agro-meteorological dataset was complied at both air and soil temperatures. Our research suggests that soil moisture requires more detailed and reliable grounds to remove doubtful data, especially in winter with its abnormal variations. The raw data and the data after QC are now available at the NCAM website (http://ncam.kr/page/req/agri_weather.php).

Risk of High Temperatures on Rice Production in China: Observation, Simulation and Prediction

  • Tao, Fulu;Shi, Wenjiao
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.44-48
    • /
    • 2016
  • Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations.

  • PDF

A System Displaying Real-time Meteorological Data Obtained from the Automated Observation Network for Verifying the Early Warning System for Agrometeorological Hazard (조기경보시스템 검증을 위한 무인기상관측망 실황자료 표출 시스템)

  • Kim, Dae-Jun;Park, Joo-Hyeon;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Yongseok;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.117-127
    • /
    • 2020
  • The Early Warning System for agrometeorological hazard of the Rural Development Administration (Korea) forecasts detailed weather for each farm based on the meteorological information provided by the Korea Meteorological Administration, and estimates the growth of crops and predicts a meteorological hazard that can occur during the growing period by using the estimated detailed meteorological information. For verification of early warning system, automated weather observation network was constructed in the study area. Moreover, a real-time web display system was built to deliver near real-time weather data collected from the observation network. The meteorological observation system collected diverse meteorological variables including temperature, humidity, solar radiation, rainfall, soil moisture, sunshine duration, wind velocity, and wind direction. These elements were collected every minute and transmitted to the server every ten minutes. The data display system is composed of three phases: the first phase builds a database of meteorological data collected from the meteorological observation system every minute; the second phase statistically analyzes the collected meteorological data at ten-minutes, one-hour, or one-day time step; and the third phase displays the collected and analyzed meteorological data on the web. The meteorological data collected in the database can be inquired through the webpage for all data points or one data point in the unit of one minute, ten minutes, one hour, or one day. Moreover, the data can be downloaded in CSV format.

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.

Monitoring Onion Growth using UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.306-317
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) became popular platforms for the collection of remotely sensed data in the last years. This study deals with the monitoring of multi-temporal onion growth with very high resolution by means of low-cost equipment. The concept of the monitoring was estimation of multi-temporal onion growth using normalized difference vegetation index (NDVI) and meteorological factors. For this study, UAV imagery was taken on the Changnyeong, Hapcheon and Muan regions eight times from early February to late June during the onion growing season. In precision agriculture frequent remote sensing on such scales during the vegetation period provided important spatial information on the crop status. Meanwhile, four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.) and fresh weight (F.W.) were measured for about three hundred plants (twenty plants per plot) for each field campaign. Three meteorological factors included average temperature, rainfall and irradiation over an entire onion growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 88% and 68% of the P.H. and F.W. with a root mean square error (RMSE) of 7.29 cm and 59.47 g, respectively. And $NDVI_{UAV}$ in the model explain 43% of the L.N. with a RMSE of 0.96. These lead to the result that the characteristics of variations in onion growth according to $NDVI_{UAV}$ and other meteorological factors were well reflected in the model.

Status of Agrometeorology Monitoring Network for Weather Risk Management: Focused on RDA of Korea (위험기상 대응 농업기상관측 네트워크의 현황: 농촌진흥청을 중심으로)

  • Shim, Kyo Moon;Kim, Yong Seok;Jeong, Myung Pyo;Choi, In Tae;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • Agro-Meteorological Information Service (AMIS) network has been established since 2001 by Rural Development Administration (RDA) in Korea, and has provided access to current and historical weather data with useful information for agricultural activities. AMIS network includes 158 automated weather stations located mostly in farm region, with planning to increase by 200 stations until 2017. Agrometeorological information is disseminated via the web site (http://weather.rda.go.kr) to growers, researchers, and extension service officials. Our services will give enhanced information from observation data (temperature, precipitation, etc.) to application information, such as drought index, agro-climatic map, and early warning service. AMIS network of RDA will help the implementation of an early warning service for weather risk management.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.