• 제목/요약/키워드: Agriculture water demand

검색결과 121건 처리시간 0.03초

물수요 중심 용수공급시스템 활용을 위한 국내 농업용수 공급체계 분석 (Analysis of Agricultural Water Distribution Systems for the Utilization of Water-Demand-Oriented Water Supply Systems)

  • 이광야;최경숙
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권2호
    • /
    • pp.139-147
    • /
    • 2013
  • This study analyzed agricultural water distribution systems for the utilization of water demand-oriented water supply systems. Three major TM/TC(telemeter/telecontrol) districts of agricultural water management were selected for analyzing the characteristics of the water distribution systems. In addition, the characteristics of the water supply systems for general water supply zones based on irrigation facilities were also investigated, along with the case of special water management during the drought season. As a result, high annual and monthly variations were observed for the water supply facilities, including the reservoirs and pumping stations. In particular, these variations were more obvious during the drought season, depending on the type of facility. The operations of the pumping stations and weirs were more sensitive to the stream levels than the reservoirs, and the smaller reservoirs were influenced more than the larger reservoirs. Therefore, a water-demand-oriented water supply system should consider the existing general practices of water management in the agricultural sector, and focus on achieving a laborsaving system rather than water conservation in the case of reservoirs. Equal water distribution from the start to the end point of irrigation channels could be an effective solution for managing pumping stations.

  • PDF

농업용수 수요량 예측기법 고찰 (Consideration of Techniques for Agricultural Water Demands Estimation)

  • 박재홍;이용직
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.37-40
    • /
    • 2002
  • It is to show the problems of the existing techniques to estimate agricultural water demand and to suggest the new methods considering the water demand for non-irrigated area and decrease of water loss in canal. It is to suggest the methods to improve the techniques for estimating agricultural water demand and to analyze the water demand and supply according to the facilities capacity. Until now, the concept of per the unit used to estimate agriculture water demand is useful to estimate demand, but is insufficient to cope with the variations of conditions in future. And the paddy area of government is not realistic against a trend of decrease. Water demand decrease is caused by constructions of irrigation facilities as constructing of irrigation canal, but application loss ratio is fixed. Increase of the water demand owing to the increase of the yield per the unit area is also the actual condition which is not considered. The guide-line must contain these contents for a demand estimate.

  • PDF

북한 황해남도지역 농업용수 수요량의 추정(관개배수 \circled2) (Estimation of Agricultural Water Demand in Hwanghae South Province, North Korea)

  • 장민원;정하우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.175-180
    • /
    • 2000
  • The purposes of this study were to determine an algorithm for estimating agricultural water demand of remote sites using remote sensing data and to apply it to Hwanghae South Province and estimate the present and potential water demand for agriculture use. 3 Landsat-5 TM images and DEM(100${\times}$100mm) were used for classification of the existing land cover and land suitability analysis for paddy fields. Also, 20 years meteorological data of North Korea were used for calculating the potential evapotranspiration by Blaney-Criddle eq. and net water demand. The results showed that the present and potential agricultural water demand and the developable area for paddy fields is about 89,300㏊.

  • PDF

Characteristics of White Water from Enzyme Deinking process for ONP at Low Alkalinity

  • Eom, Tae-Jin
    • 펄프종이기술
    • /
    • 제41권5호
    • /
    • pp.44-49
    • /
    • 2009
  • Old newspaper was deinked using commercial cellulolytic enzymes and a surfactant complex at low alkalinity. The properties of the deinked pulp(DIP) were evaluated and the suspended solids content, cationic demand, turbidity, and chemical oxygen demand(COD) of the process water were measured. The results can summarized as follows, 1. The brightness and yield of the DIP were improved using enzymatic surfactant complex deinking. 2. The amount of foaming during deinking with the enzyme surfactant complex was higher than that with synthetic surfactant deinking. However, it was not sufficient to cause process problem. 3. The pH and turbidity of the white water from deinking with the enzyme surfactant complex were similar to those of the white water from surfactant deinking. 4. The suspended solids content, cationic demand, and COD of the white water from deinking with the enzyme surfactant complex were improved compared to those of the white water from surfactant deinking.

대동호의 시기별 및 계절별 수질변화 평가 (Assessment of Seasonal Variation in Water Quality in Daedong Lake)

  • 윤진주;강세원;박종환;서동철;김현우;조주식
    • 한국환경농학회지
    • /
    • 제39권3호
    • /
    • pp.197-203
    • /
    • 2020
  • BACKGROUND: Most lakes have increased concerns about water pollution due to the inflow of non-point sources caused by human activities. Therefore, the lake water quality survey was conducted in order to propose effective plans for water quality management by analyzing the characteristics of lakes and the change of water quality. METHODS AND RESULTS: In order to investigate the physicochemical water quality in Daedong lake, water quality analysis was undertaken from July 2018 to June 2019. Water temperature was ranged from 7.8 to 34.3℃ and pH varied from 6.9 to 10.2. The concentration of Dissolved oxygen, Suspended solid, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were 5.6 ~ 17.2 mg/L, 2.4 ~ 35.3 mg/L, and 4.5 ~ 15.1 mg/L, and 0.9 ~ 2.8 mg/L, respectively. The Total Nitrogen (T-N) concentration ranged from 0.974 ~ 2.126 mg/L, and Total Phosphorus (T-P) concentration ranged from 0.014 ~ 0.057 mg/L. The Chlorophyll-a (Chl-a) ranged from 2.7 ~ 37.9 mg/㎥. Through Carlson TSIm assessment using T-P and Chl-a results, evaluating trophic state, Daedong lake was evaluated as mesotrophic. CONCLUSION: Water pollution management plan needs such as nutrient removal technology and nonpoint source management for prevention of eutrophication in Daedong lake.

Sustainable Management of Irrigation Water Withdrawal in Major River Basins by Implementing the Irrigation Module of Community Land Model

  • Manas Ranjan Panda;Yeonjoo Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2023
  • Agricultural water demand is considered as the major sector of water withdrawal due to irrigation. The majority part of the global agricultural field depends on various irrigation techniques. Therefore, a timely and sufficient supply of water is the most important requirement for agriculture. Irrigation is implemented in different ways in various land surface models, it can be modeled empirically based on observed irrigation rates or by calculating water supply and demand. Certain models can also calculate the irrigation demand as per the soil water deficit. In these implementations, irrigation is typically applied uniformly over the irrigated land regardless of crop types or irrigation techniques. Whereas, the latest version of Community Land Model (CLM) in the Community Terrestrial Systems Model (CTSM) uses a global distribution map of irrigation with 64 crop functional types (CFTs) to simulate the irrigation water demand. It can estimate irrigation water withdrawal from different sources and the amount or the areas irrigated with different irrigation techniques. Hence, we set up the model for the simulation period of 16 years from 2000 to 2015 to analyze the global irrigation demand at a spatial resolution of 1.9° × 2.5°. The simulated irrigation water demand is evaluated with the available observation data from FAO AQUASTAT database at the country scale. With the evaluated model, this study aims to suggest new sustainable scenarios for the ratios of irrigation water withdrawal, high depending on the withdrawal sources e.g. surface water and groundwater. With such scenarios, the CFT maps are considered as the determining factor for selecting the areas where the crop pattern can be altered for a sustainable irrigation water management depending on the available withdrawal sources. Overall, our study demonstrate that the scenarios for the future sustainable water resources management in terms of irrigation water withdrawal from the both the surface water and groundwater sources may overcome the excessive stress on exploiting the groundwater in major river basins globally.

  • PDF

토지이용 변화를 고려한 제주도 권역별 미래 농업용수 수요량 추정 (Estimation of Regional Future Agricultural Water Demand in Jeju Island Considering Land Use Change)

  • 송성호;명우호;안중기;장중석;백진희;정차연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권1호
    • /
    • pp.92-105
    • /
    • 2018
  • In this study, the projected land use area in 2030 for major crop production was estimated in Jeju Island using land cover map, and corresponding agricultural water demand for 40 sub-regions was quantitatively assessed using the future climate change scenario (RCP 4.5). Estimated basic unit of water demand in 2030 was the highest in the western region, and the lowest in the eastern region. Monthly maximum agricultural water demand analysis revealed that water demand in August of 2030 substantially increased, suggesting the climate of Jeju Island is changing to a subtropical climate in 2030. Agricultural water demand for sub-region in 2030 was calculated by multiplying the target area of the water supply excluding the area not in use in winter season by the basic unit of water demand, and the maximum and minimum values were estimated to be $306,626m^3/day$ at Seogwipo downtown region and $77,967m^3/day$ at Hallim region, respectively. Consequently, total agricultural water demand in Jeju Island in 2030 was estimated to be $1,848,010m^3/day$.

Impact of Pig Slurry from WangGoong Farm Cluster on Water Quality of the Iksan Stream

  • Choi, Hong-Lim;Suresh, A.;Babu, T.;Mansyur, Mansyur
    • Journal of Animal Science and Technology
    • /
    • 제53권6호
    • /
    • pp.549-561
    • /
    • 2011
  • Livestock wastewater is being discharged without treatment from Hasen's pig farm cluster in WangGoong (WG) area into the Iksan Stream, eventually flowing into the ManGyung (MG) at the upstream junction. Although it is well known that before discharge, wastewater must satisfy the pig slurry discharge standards; because of ongoing remodeling, proper treatment is not being performed. According to public records, wastewater from the WG pig farm cluster is responsible for 3.6% of MG River pollution and 2.0% of the SaeManGuem (SMG) Reservoir pollution. As a result, upstream water treatment quality has become primary concern for development of the SMG project. All physicochemical constituents and pathogenic microbes, such as chemical oxygen demand ($COD_{Cr}$), biochemical oxygen demand ($BOD_5$), total suspended solids (TSS), total nitrogen (TN), total phosphorous (TP), fecal coliforms, Escherichia coli and Salmonella at the effluent of WG Plant (S-1) exceed the effluent standards. This is mainly due to insufficient wastewater treatment: the WG Plant is under renovation to increase water purification efficiency. By comparing the water quality at the S-7 junction, where the the Iksan Stream (pig farms) and the Wanggoong Stream (no pig farms) merge, it is clear that farming facilities and improper treatment can critically affect surrounding water quality. While it is clear throughout this study that the level of all physicochemical parameters and pathogenic microbes along the Stream decreased due to sedimentation, biodegradation and/or dilution. An alarming problem was discovered: the existence of pathogenic microbe count(E coli, Salmonella) in the lagoon wastewater and the stream water. Not only were high concentrations of these pathogens themselves found, but the potential existence of more serious pathogens could rise to more dangerous conditions.

물수지 분석법을 이용한 제주도 권역별 미래 농업용 지하수 공급 가능량 추정 (Estimation of Regional Future Agricultural Available Groundwater Supply in Jeju Island Using Water Balance Method)

  • 송성호;이규상;명우호;안중기;백진희;정차연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권2호
    • /
    • pp.23-37
    • /
    • 2019
  • To evaluate the available groundwater supply to the agricultural water demand in the future with the climate change scenarios for 40 sub-regions in Jeju Island, groundwater recharge and the available groundwater supply were estimated using water balance analysis method. Groundwater recharge was calculated by subtracting the actual evapotranspiration and direct runoff from the total amount of water resources and available groundwater supply was set at 43.6% from the ratio of the sustainable groundwater capacity to the groundwater recharge. According to the RCP 4.5 scenario, the available groundwater supply to the agricultural water demand is estimated to be insufficient in 2020 and 2025, especially in the western and eastern regions of the island. However, such a water shortage problem is alleviated in 2030. When applying the RCP 8.5 scenario, available groundwater supply can't meet the water demand over the entire decade.

논용수 수요량 산정을 중심으로 한 농업용수 수요량 산정방법의 개선 (Improvement of agricultural water demand estimation focusing on paddy water demand)

  • 박창근;황준식;서용원
    • 한국수자원학회논문집
    • /
    • 제53권11호
    • /
    • pp.939-949
    • /
    • 2020
  • 현재 농업환경 및 식생활 변화 등으로 인하여 농지 수요는 꾸준히 감소하고 있다. 이러한 현상과 맞물려 정부에서는 2019년 6월에 물관리기본법을 제정함으로써 지속가능한 통합 물 관리시대를 본격화 하고 있다. 따라서 효율적인 통합 물 관리를 실현하기 위해서는 61%라는 가장 많은 용수를 사용하고 있는 농업용수에 대한 면밀한 검토가 이루어져야 할 시점이다. 금회 연구에서는 현재 농업용수 사용량 현황을 분석함과 동시에 농업용수 중 67% ~ 87%의 비율을 차지하고 있는 논 용수 산정법을 검토한 후 문제점을 분석하였다. 논 용수 산정방법의 가장 큰 문제점은 잠재증발산량 산정식 선정에 있다. 현재 사용하고 있는 잠재증발산량 방법은 식량농업기구(Food and Agriculture Organization of the United Nationns: FAO)에서 권장하고 있는 Penman-Monteith 식이 아닌 과거부터 사용되고 있는 수정 Penman 식이다. 또한 실제 증발산량 산정의 주요 인자인 작물계수는 23년 전의 작물계수를 이용함으로써 현재 기후 및 작물품종 변화를 반영할 수 없다는 문제점을 가지고 있다. 전주기상청의 자료를 이용하여 Penman 및 Penman-Monteith 식을 비교한 결과 수정 Penman 식이 Penma-Monteith 식에 비하여 2배 이상의 큰 값을 보였다. 작물계수를 적용할 경우 증발산량이 높게 발생되는 5월 하순에서 8월 하순까지 두 산정방식에 의한 결과 차이가 크게 나타났다. 또한 전북 김제지역 4개 농업용 저수지 용수공급량 자료를 이용하여 실제 사용량과 산정된 농업용수 수요량을 비교 검토하였다. 잠재증발산량 뿐 아니라 담수심법에 따라 최적 수요량 산정방법에는 차이를 보였다.