• Title/Summary/Keyword: Agriculture drought

Search Result 279, Processing Time 0.041 seconds

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Selection of drought tolerant plants through physiological indicators (생리적 인자 분석을 통한 내건성 식물 선발)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyeong;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Drought tolerant species from 26 Korean native plants were selected using different physiological indicators. Arundinella hirta, Solanum carolinense and Carpesium divaricatum were withered after 8days of the stopping of irrigation. Plants except Kummerowia striata, Lespedeza cuneata and Ulmus parvifolia were withered in over 80% at 9-10days of the irrigation stopping. K. striata was withered after 10days, and L. cuneata and U. parvifolia were withered in over 90% after 11days of the stopping of irrigation. As stopping experiment of irrigation, A. hirta, S. carolinense, C. divaricatum, K. striata, L. cuneata and U. parvifolia were proved to be drought tolerant species. Among those plant species, transpiration rate of Cassia mimosoides var. nomame Makino was high as 0.042ml/㎠·4hr. However, unit transpiration rate of U. parvifolia and L. cuneata were 0.005 and 0.010ml/㎠·4hr, respectively. In testing of physiological indicators, leaf area and transpiration rate were different among plant species. Unit transpiration rate of U. parvifolia was lower compared with other plant species. L. cuneata, U. parvifolia, Kummerowia striata, Arundinella hirta and C. divaricatum were high in relative water content and low in relative water loss. As this results, L. cuneata and U. parvifolia. were identified as drought tolerant species.

qVDT11, a major QTL related to stable tiller formation of rice under drought stress conditions

  • Kim, Tae-Heon;Cho, Soo-Min;Han, Sang-Ik;Cho, Jun-Hyun;Kim, Kyung-Min;Lee, Jong-Hee;Song, You-Chun;Park, Dong-Soo;Oh, Myung-Gyu;Shin, Dongjin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.91-91
    • /
    • 2017
  • Drought is the most serious abiotic stress limiting rice production. However, little progress has been made in the genetic analysis of drought tolerance, because it is a complex trait controlled by a number of genes and affected by various environmental factors. In here, we screened 218 rice genetic resources for drought tolerance at vegetative stage and selected 32 highly drought tolerant varieties in greenhouse. Under rain-fed conditions, Grain yield of Nagdong was decreased by 53.3% from 517 kg/10a to 241 kg/10a when compare to irrigation condition. By comparison, grain yield of Samgang was decreased by 23.6% from 550 kg/10a to 420 kg/10a. The variety Samgang exhibited strong drought tolerance and stable yield in rain-fed conditions and was selected for further study. To identify QTLs for drought tolerance, we examined visual drought tolerance (VDT) and relative water content (RWC) using a doubled haploid (DH) population consisted of 101 lines derived from a cross between Samgang (a drought tolerance variety) and Nagdong (a drought sensitive variety). Three QTLs for VDT were located on chromosomes 2, 6, and 11, respectively, and explained 41.8% of the total phenotypic variance. qVDT2, flanked by markers RM324 and S2016, explained 8.8% of the phenotypic variance with LOD score of 3.3 and an additive effect of -0.6. qVDT6 was flanked by S6022 and S6023 and explained 12.7% of the phenotypic variance with LOD score of 5.0 and an additive effect of -0.7. qVDT11, flanked by markers RM26765 and RM287, explained 19.9% of the phenotypic variance with LOD score of 7.1 and an additive effect of -1.0. qRWC11 was the only QTL for RWC to be identified; it was in the same locus as qVDT11. qRWC11 explained 19.6% of the phenotypic variance, with a LOD score of 4.0 and an additive effect of 9.7. To determine QTL effects on drought tolerance in rain-fed paddy conditions, seven DH lines were selected according to the number of QTLs they contained. Of the drought tolerance associated QTLs, qVDT2 and qVDT6 did not affect tiller formation, but qVDT11increased tiller number. Tiller formation was most stable when qVDT2 and qVDT11 were combined. DH lines with both of these drought tolerance associated QTLs exhibited the most stable tiller formation. These results suggest that qVDT11 is important for drought tolerance and stable tiller formation under drought stress condition in field.

  • PDF

Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit

  • Im, Ju-Sung;Cho, Kwang-Soo;Cho, Ji-Hong;Park, Young-Eun;Cheun, Chung-Gi;Kim, Hyun-Jun;Cho, Hyun-Mook;Lee, Jong-Nam;Jin, Yong-Ik;Byun, Myung-Ok;Kim, Dool-Yi;Kim, Myeong-Jun
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.154-162
    • /
    • 2012
  • This study was conducted to evaluate agronomic characteristics such as growth, quality, and yields of StMyb1R-1 transgenic potato and also to obtain the basic data for establishing assessment guidelines of transgenic potato. Three transgenic lines (Myb 1, Myb 2, and Myb 8) were cultivated under conventional irrigation, drought condition, and severe drought condition and were analyzed by comparing with wild type, non-transgenic cv. Superior. Myb 2 showed a different flower color from wild type and Myb 1 had much bigger secondary leaflets than wild type. Myb 1 and Myb 2 showed higher $P_2O_5$ content in both top and root zone and longer shaped tubers than wild type. In yield factors, transgenic lines had more tubers than wild type, however their yield decreases were severe because of the poor enlargement of tuber under water deficit condition. This tendency was noticeable in Myb 1 and Myb 2. In TR ratio, chlorophyll content, dry matter rate, and relative water content, there were no big differences between transgenic lines and wild type. Meanwhile, in phenotype, growth, quality, and yield factors, substantial equivalent was confirmed between Myb 8 and wild type. Then, Myb 8 showed the highest marketable tuber yield under conventional irrigation, while showed lower level than wild type under water deficit. Judged by this result, the enhancing droughttolerance by StMyb1R-1 gene might actually not mean the enhancement of photosynthesis or starch accumulation in tuber and, furthermore, not the yield improvement. More detailed research will be required to accurately understand the relationship between StMyb1R-1 and yield factors.

Quality and Yield Characteristics of Potato (Solanum tuberosum L.) Grown at Paddy Field in Spring Season

  • Im, Ju Sung;Cho, Ji Hong;Chang, Dong Chil;Jin, Yong Ik;Park, Young Eun;Chun, Chung Gi;Kim, Dong Un;Yu, Hong Seob;Lee, Jong Nam;Kim, Myung Jun
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • This study was conducted to determine the characteristics of quality and yield in potatoes grown at paddy field before rice transplantation during the spring season. Three potato cultivars ('Jowon', 'Haryeong', and 'Goun') were grown in Gangneung (asl 5 m) and Seocheon (asl 20 m). In both locations, weather condition belonged to the fourth zone (spring cropping) in potato production location's distribution of Korea. Daily mean soil temperature in both the locations was $0.2-0.6^{\circ}C$ lower than air temperature, while soil moisture was adequate level to potato growth in spite of spring drought. TR ratio was not affected by location, but by cultivar. Specific gravity, starch content, dry matter rate, and yield were significantly influenced by location and by cultivar. There was no difference in total tuber number by location, however there was a large gap in marketable tuber yield according to locations and cultivars. There were high negative relationships between yield and main qualities such as dry matter rate and starch content, while high positive correlation was observed between main qualities. It was possible to produce potato before rice transplanting at drained paddy fields located in representative two locations of potato spring cropping and their characteristics in growth and quality were similar to those generally well known in upland cultivation. Paddy field was thought to be more favorable than upland in terms of available soil moisture supply against spring drought. Further research, however, was needed to increase soil temperature and also preliminary review on proper cultivar according to location seemed to be needed for high yield.

Investigation into Whether Agronomic Traits Are Fixed for the Breeding of Drought Tolerance and BPH-resistant Crosses (내건성 및 BPH 내성 계통의 육성을 위한 농업형질 고정여부 조사)

  • Lee, So Young;Kim, Eun-Gyeong;Park, Jae-Ryoung;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.798-803
    • /
    • 2020
  • Late in the 1960s, South Korea established cultivation technology and began breeding new "Tongil" type rice cultivars by crossing indica and japonica. To date, this cultivation technique has been used to produce a wide variety of cultivars to meet consumer preferences and adapt to extreme weather conditions. Once major genetic traits are no longer segregated through advanced generations, varieties obtained from a cross between different crops may become a new variety. In this study, we confirmed the agronomic traits of F4, F5, and F6 by advanced generation a population in which drought tolerance and brown planthopper (BPH) resistance were crossed. HV23, Ilmi/HV23, and Drimi2ho/HV23 were used. HV23 was drought-tolerant, and Drimi2ho was resistant to BPH. As a result, it was possible to consider that the agronomic traits were fixed because none of them showed a significant difference from the others. While it takes more than 10 years for the pedigree method of breeding, this study confirmed that the agronomic traits were fixed in 4-6 years. In the future, we will investigate the homology of the CaMsrB2 gene and the Bph1 gene, to confirm that both genes are closely related to each other, and analyze the stable inheritance of the introduced gene for multiple successive generations.

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse (식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과)

  • Kim, Dayeon;Lee, Sang-Yeob;Kim, Jung-Jun;Han, Ji-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.833-847
    • /
    • 2016
  • Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.

Vulnerability Assessment on Spring Drought in the Field of Agriculture (농업지대 봄 가뭄에 대한 취약성 평가)

  • Lee, Yong-Ho;Oh, Young-Ju;Na, Chae-Sun;Kim, Myung-Hyun;Kang, Kee-Kyung;Yoon, Seong-Tak
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.397-407
    • /
    • 2013
  • Seasons in Korea have very distinguishable features. Due to continental high pressure, spring in Korea is dry and has low precipitation. Due to climate change derived from the increase of greenhouse gases, climate variability had increased and it became harder to predict. This caused the spring drought harsher than usual. Since 1990s, numbers of chronic drought from winter to spring increased in southern regions of Korea. Such drought in the spring damages the growth and development of the crops sown in the spring and decreases its quantity. For stable agricultural production in the future, it is necessary to assess vulnerability of the relationship between spring drought and agricultural production as well as to establish appropriate measures accordingly. This research used CCGIS program to perform vulnerability assessment on spring drought based on climate change scenario SRES A1B, A1FI, A1T, A2, B1, B2 and RCP 8.5 in 232 regions in Korea. As a result, Every scenario showed that vulnerability of spring drought decreased from 2000s to 2050s. Ratio of decrease was 37% under SRES scenario but, 3% under RCP 8.5 scenario. Also, for 2050 prediction, every scenario predicted the highest vulnerability in Chungcheongnam-do. However, RCP-8.5 predicted higher vulnerability in Gyeonggi-do than SRES scenario. The reason for overall decrease in vulnerability of agriculture for future spring drought is because the increase of precipitation was predicted. The assessment of vulnerability by different regions showed that choosing suitable scenario is very important factor.

Extracellular Polymeric Substances of Pseudomonas chlororaphis O6 Induce Systemic Drought Tolerance in Plants

  • Cho, Song Mi;Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2018
  • Pseudomonas chlororaphis O6 induces systemic tolerance in plants against drought stress. A volatile, 2R, 3R-butanediol, produced by the bacterium causes partial stomatal closure, thus, limiting water loss from the plant. In this study, we report that applications of extracellular polymeric substances (EPS) from P. chlororaphis O6 to epidermal peels of leaves of Arabidopsis thaliana also reduce the size of stomatal openings. Growth of A. thaliana seedlings with applications of the EPS from P. chlororaphis O6 reduced the extent of wilting when water was withheld from the plants. Fluorescence measurements showed photosystem II was protected in the A. thaliana leaves in the water stressed EPS-exposed plants. These findings indicate that P. chlororaphis O6 has redundancy in traits associated with induction of mechanisms to limit water stress in plants.

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF