• 제목/요약/키워드: Agriculture Reservoir

Search Result 203, Processing Time 0.026 seconds

Development of Agriculture-related Data Inventories Using IKONOS Images

  • Kim Seong Joon;Hong Seong Min;Lee Mi Seon;Lim Hyuk Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.618-620
    • /
    • 2004
  • This paper explores the use of IKONOS imagery of 1 m resolution panchromatic (PAN) band and 4 m resolution multi-spectral (MS) band in the development of agriculture­related data inventories. Three images (May 25, 2001, December 25, 2001, October 23, 2003) were used to obtain temporal distributions in crop cover characteristics such as rice, pear, grape, red pepper, corn, barley, garlic and surface water cover of reservoir with field investigations. The availability and cost problems are expected to solve by KOMPSAT-2 that is scheduled to launch in 2005. The capability of KOMPSAT-2 image for crop and rural water resources management will increase by accumulating temporal data inventories as a database.

  • PDF

Development of Evaluation System for Agricultural Drought Management (농업가뭄 분석을 위한 농업가뭄평가.정보제공시스템 개발)

  • Park, Ki-Wook;Kim, Jin-Taek;Cheong, Byung-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.7-13
    • /
    • 2005
  • There are two ways to mitigate the drought. One is the structural measures such as storage of irrigation water, development of emergency wells, etc. The other one is the nonstructural measures such as water saving management by the early warning system. To precast and evaluate the drought, we need to develop the drought indices for agriculture. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. However there are not clear quantitative criteria for consistent judgment. This shows that we have not selected and utilized the proper drought index for agriculture and we did not have the information system to calculate the drought indices periodically and warn the outbreak of the drought. The objectives of the study are to develope of Agricultural Drought Evaluation System and to evaluate this indices for current agricultural status using the system.

  • PDF

Development of Agriculture-related Data Inventories Using IKONOS Images

  • Kim Seong-Joon;Lim Hyuk-Jin;Hong Seong-Min;Lee Mi-Seon;Park Geun-Ae;Kwon Hyung-Joong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.425-431
    • /
    • 2005
  • This paper describes the method of using IKONOS imagery in the development of agriculture-related data inventories. Temporally different three images of panchromatic (1m resolution) and multi-spectral bands (4m resolution) were used to obtain the distribution and characteristics of rice, pear, grape, red pepper, garlic, and reservoir surface area with the field surveys. The result of this study suggests the utility of KOMPSAT-II, which increases the use of the crop and water resources data in rural areas by accumulating temporal data inventories.

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

IMPROVEMENT OF FRESHENING PROCESS BY MEANS OF UNDERDRAINAGE CONDUIT

  • Suh, Young-Jea;Kim, Jin-Kyoo
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.93-104
    • /
    • 1993
  • This paper is concerned with the actual comparison analysis for the freshening process in the two selected experimental reservoirs. At the deep freshening reservoir, salinity and depth of the freshwater layer were estimated by simulation technique using the quantitative equation for the two layered flow structures. First of all, it is shown that the effects of underdraiange conduit in the lower layer were reported more effective for the control of upper layer salinity comparing with the case of no underdraiange conduit. Further the results of computation were later compared with the real observed values and the relating parameters of the salt balance equation are conformed even though approximately. Finally it was represented that the salinity of upper layer is easily diluted not only by the tidal gate but also by the underdraiange conduit in the lower layer of the freshening reservoir.

  • PDF

Estimation of Available Permit Water for Large Scale Agricultural Reservoirs in Youngsan River Basin (영산강권역 대규모 농업용 저수지의 가용허가수량 추정)

  • Kim, Sun-Joo;Park, Ki-Chun;Park, Hee-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.93-97
    • /
    • 2012
  • Agricultural water reservoirs upstream of the intake on the basis of the intaking water volume is being made. Therefore, the supply capacity of reservoirs are not considered when the water balance analysis, storm water reservoirs are based on agriculture and further secured by the reservoir water is not used to using natural river water analysis. To overcome these problems can supply reservoirs are available to permit analysis of how much the quantity of water balance analysis, it should be reflected in the line to help. In this study, the natural daily flow data and apply the dimensions of the reservoir, and for more than 30 years of the long-term water balance analysis conducted by Date Youngsan river basin can supply reservoirs are large quantity of permits available is presented.

호소 및 하천의 오염 저질토 sampling 방법 및 처리방안 연구

  • 최동호;배우근;최형주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.115-119
    • /
    • 2003
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water body can accumulate in sediment at much higher levels, the purpose of this study was to make convenient sampling method and optimal treatment of sediment for water quality improvement in reservoir or stream based on an evaluation of degree of contamination. Results for analysis of S-reservoir sediments were observed that copper concentration of almost areas were higher than the regulation of soil pollution (50 mg/1) for the riverbed. S-stream sediments were observed that copper, arsenic and TPH concentration of almost areas were exceeded soil pollution concerning levels for factorial areas. We used Remscreen(version. 1.0) program which is contaminated soil recovery program to select optimal treatment method of contaminant sediments. The result was shown in the order of Thermal Calcination > Excavation, Retrieval and Off-site Disposal(comparative less then contaminant) > Low Temperature Thermal Desorption + Solidification/Stabilization.

  • PDF

Researching impact of climate change and economic development on the water supply deficit of Ta Keo reservoir, Lang Sonprovince, Viet Nam

  • Chin, L.V.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.199-199
    • /
    • 2016
  • In recent decades, climate change phenomenon has developed towards critical tendency and increased in both frequency, intensity and time which causes catastrophic damage in both people and property, especially in the field of agriculture and water resources. At the current, some researches in the world and Viet Nam studies on climate change impacts on the water resources sectors. Results of scientists'studies showed that climate change will seriously impact productivity, livelihoods and the environment on a global scale; especially large flood phenomena increasingly developing in intensity, drought more violently occurring in a long time. In recent years, the shortage of water supply for economic activity has started to happen with quite serious degree at the Viet Nam, especially in the northern mountainous provinces of Viet Nam.

  • PDF

Researching impact of climate change and economic development on the water supply deficit of Dong Quan reservoir, Ha Noi Capital, Viet Nam

  • Chin, L.V.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.190-190
    • /
    • 2017
  • In recent decades, climate change phenomenon has developed towards critical tendency and increased in both frequency, intensity and time which causes catastrophic damage in both people and property, especially in the field of agriculture and water resources. At the current, some researches in the world and Viet Nam studies on climate change impacts on the water resources sectors. Results of scientists' studies showed that climate change will seriously impact productivity, livelihoods and the environment on a global scale; especially large flood phenomena increasingly developing in intensity, drought more violently occurring in a long time. In recent years, the shortage of water supply for economic activity has started to happen with quite serious degree at the Viet Nam, especially in the northern provinces of Viet Nam.

  • PDF