• Title/Summary/Keyword: Agriculture Reservoir

Search Result 203, Processing Time 0.026 seconds

THE APPLICATION OF AUSTRALIAN TROPICAL PASTURE TECHNOLOGY TO ASIA AND THE PACIFIC - Review -

  • Ayres, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.169-186
    • /
    • 1993
  • The grassland regions of Australia, the Pacific and Asia share common latitudes albeit in opposing hemispheres. However, the environmental and socio-cultural context of pasture development in the subtropical and tropical regions of Australia, the Pacific Islands and Asia differ greatly. Successful technology transfer for improved productivity of grazing livestock is beset by three broad challenges; technical, logistical and socio-cultural. The technical challenge of defining the grassland environment and adapting known technology to local conditions can be successfully addressed by local technicians supported by a reservoir of appropriate international expertise. Logistical difficulties that impede provision of infrastructure and continuity of support services are the responsibility of indigenous organizations. Socio-cultural factors are fundamentally pervasive. These challenges, though outwardly obvious, require careful consideration by both donors and recipients of pasture technology to ensure success with pasture development for viable grazing industries.

Growth of Two Native Zoysiagrasses Collected from Sea Side and Mountain Area in Indonesia on Growing Media Composed of Sand and Clay

  • Rahayu, Rahayu;Dewantoro, Hery;Arianto, Dwi Priyo;Bae, Eun-Ji;Choi, Su-Min;Lee, Kwang-Soo;Yang, Geun-Mo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Zoysiagrass (Zoysia spp.) exists spotly in Indonesia and it has potential to be used in parks, golf courses, and football fields. Many football fields and golf course fairways use sand as top soil over native soil. This study aims to analyze growth and quality of two native zoysiagrasses Zis and Zim. Zis is a native zoysiagrass collected in sea-side and Zim is a native zoysiagrass collected in mountain area. Both types of zoysiagrasses were planted at field with altitude of 300 m with various growing media mixes of sand and reservoir's sediment. Thickness of the growing medium was 10 cm over an alfisol clay soil. Experimental plots were constructed using factorial completely randomized design with two native zoysiagrasses and 5 types of growing media. Two ecotypes of native zoysiagrasses showed different in growth habits combined with mixtures of growth media. Zim showed higher growing speed including more vigor with uniformity and texture than Zis. There were not significanthly differences on leaf color and root length between two ecotypes of native zoysiagrasses collected in Indonesia.

Analysis of Water Quality and Soil Environment in Paddy Fields Partially Irrigated with Untreated Wastewater (미처리하수지구 논에서의 수질 및 토양 특성 분석)

  • Song, Jung Hun;Jeong, Han Seok;Park, Ji Hoon;Song, In Hong;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.19-29
    • /
    • 2014
  • The objectives of this study were to monitor and analyse water quality and soil property in paddy fields where untreated wastewater is irrigated. Three paddy fields where streamflow mixed with untreated wastewater has been irrigated (untreated wastewater district, UWD) were selected for monitoring, and five paddy fields in Yongin area (Yongin district, YID) where water from Idong agricultural reservoir (well-managed) has been irrigated were selected for comparative evaluation. Electronic conductivity (EC), suspended solids (SS), total nitrogen (T-N), total phosphorous (T-P), $NO_3-N$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, total coliform (TC), fecal coliform (FC), and E. coli of the irrigation water in the UWD were significantly higher than those in the YID. Relatively high concentrations of EC, T-N, T-P, TC, FC, E. coli, copper (Cu), lead (Pb), zinc (Zn), and aluminium (Al) were shown in the irrigation water of the UWD especially during May to June. In general, the paddy soil in the UWD contained more Pb, Zn, and Cu than in the YID although the soil heavy metal contents in the UWD still meet the Korean soil contamination warning standards. No temporal trends in the heavy metal concentrations were found in paddy soils of the UWD. This study showed that the use of untreated wastewater to paddy fields has the possibility of negative impacts on water quality and soil, although long-term monitoring is needed to fully evaluate its effects.

A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its Mitigation (소양강 탁수 현황과 저감에 대한 수리학적 분석)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.85-92
    • /
    • 2008
  • Water in Soyang River is an essential source for citizens of Chuncheon and Seoul areas. In 2006, turbid water in Soyang River aggravated by the typhoon Ewiniar, sustained for over 280 days unlike conventional years, then which interrupted water supply of Chuncheon and Seoul areas. Soil erosion derived from high cool lands constituting about 55% of Soyang River area is considered one of main causes for the turbid water, including imprudent development of mountainous area, road expansion, and road construction for forestry. According to analysis of turbidity, precipitation and reservoir level in Soyang River region for June 2006${\sim}$August 2008, the turbidity showed a peak correlation (r = 0.28) at a lag time of 49 days and especially did an excellent correlation (r = 0.60) with the reservoir level at a lag of 4 days. In the meantime, a critical turbidity of 31 NTU at Soyanggang Dam was estimated, over which would cause turbid water at Paldang Dam. In addition, a master recession curve was suggested, from which sustaining time of turbid water can be predicted.

Uncertainty Analysis of Future Design Floods for the Yongdang Reservoir Watershed using Bootstrap Technique (Bootstrap 기법을 이용한 용당 저수지 유역의 미래 설계홍수량 불확실성 평가)

  • Lee, Do Gil;Kang, Moon Seong;Park, Jihoon;Ryu, Jeong Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • To estimate design floods for hydraulic structures, statistical methods has been used in the analysis of rainfall data. However, due to the lack of rainfall data in some regions, it is difficult to apply the statistical methods for estimation of design rainfall. In addition, increased uncertainty of design rainfall arising from the limited rainfall data can become an important factor for determining the design floods. The main objective of this study was to assess the uncertainty of the future design floods under RCP (representative concentration pathways) scenarios using a bootstrap technique. The technique was used in this study to quantify the uncertainty in the estimation of the future design floods. The Yongdang watershed in South Korea, 2,873 ha in size, was selected as the study area. The study results showed that the standard errors of the basin of Yongdang reservoir were calculated as 2.0~6.9 % of probable rainfall. The standard errors of RCP4.5 scenario were higher than the standard errors of RCP8.5 scenario. As the results of estimation of design flood, the ranges of peak flows considered uncertainty were 2.3~7.1 %, and were different each duration and scenario. This study might be expected to be used as one of guidelines to consider when designing hydraulic structures.

A Study on Analysis of Reserves and Available Capacity of Unutilized Energy in Rural Community (농어촌지역 미활용에너지의 부존량과 이용 가능량 분석)

  • Park, Mi-Lan;Ryoo, Yeon-Su;Kim, Jin-Wook;Lee, Yong-Uk;Bae, Sung-Don;Chae, Kap-Byung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • Alternative sources of energy take a higher interest in order to reduce the greenhouse gas under the Climate Change Convention, fossil fuel consumption, and lower social anxiety about nuclear power such as crisis involving the Fukushima plant, problem of obsolete equipment. The energy consumption of agriculture, forestry and fisheries in South Korea is 3,082,000toe by 2011, reliance on electrical energy(35%) and oil(57.2%) is very high with 92.2%. In this study, we examined reserves and available capacity of temperature difference energy for thermal discharge from plant, treated sewage, river water, dam, and agricultural reservoir in rural community. Reserves of unutilized energy are 455,735Tcal/yr in rural community, these accounts for 78% of total reserves 582,385Tcal/y. Thermal discharge from plant has the most reserves of unutilized energy in rural community, it is estimated that it has the reserves of 277,410Tcal/y. Available capacity of unutilized energy in rural community is total 134,147Tcal/y, thermal discharge from plant available for heating is the most 128,035Tcal/y, and it shows in the order of treated sewage 4,318Tcal/y, river water 1,653Tcal/y, and reservoir 141Tcal/y. Elevating temperature area of green house by 2012 is 21,208ha. The amount of energy required for heating the greenhouse a year is dbout 11,365Tcal/y with 8.5% of the total available capacity of unutilized energy.

Water Supply Risk Assessment of Agricultural Reservoirs using Irrigation Vulnerability Model and Cluster Analysis (관개취약성 평가모형 및 군집분석을 활용한 용수공급 위험도 평가)

  • Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Because reservoirs that supply irrigation water play an important role in water resource management, it is necessary to evaluate the vulnerability of this particular water supply resource. The purpose of this study is to provide water supply risk maps of agricultural reservoirs in South Korea using irrigation vulnerability model and cluster analysis. To quantify water supply risk, irrigation vulnerability indices are estimated to evaluate the performance of the water supply on the agricultural reservoir system using a probability theory and reliability analysis. First, the irrigation vulnerability probabilities of 1,346 reservoirs managed by Korea Rural Community Corporation (KRC) were analyzed using meteorological data on 54 meteorological stations over the past 30 years (1981-2010). Second, using the K-mean method of non-hierarchical cluster analysis and pre-simulation approach, cluster analysis was applied to classify into three groups for characterizing irrigation vulnerability in reservoirs. The morphology index, watershed area, irrigated area, and ratio between watershed and irrigated area are selected as the clustering analysis parameters. It is suggested that the water supply risk map be utilized as a basis for the establishment of risk management measures, and could provide effective information for a reasonable decision making on drought risk mitigation.

Optimization of Storage Tank Installation Locations for Pipeline Water Supply Using Genetic Algorithm (유전자 알고리즘을 이용한 관수 저류조의 공간배치 최적화)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.43-53
    • /
    • 2022
  • Rice paddy has been actively converted into upland crop fields as more profitable upland crop cultivation are encouraged along with the decrease in rice consumption. However, the current water supply system remains mainly for paddy water supply, so research on pipeline water supply for upland cultivation is needed. The objective of this study was to optimize storage tank installation locations for pipeline water supply in reservoir irrigation districts. Five of reservoir irrigation districts were selected as the study sites and gridded of 10×10 m in size. Then genetic algorithm was adopted to evaluate the effects of spatial storage tank allocation on total pipeline cost. The lengths of the main and branch pipelines were considered as the objective cost function for the optimization of storage tank installation. Overall the shorter the branch pipeline and the longer the main pipeline, as the number of storage tanks increase. The minimal pipeline cost, i.e., optimal condition was reached when approximately 10% of the storage tank numbers to total upland plots were installed. The methodology presented in this study can be applied to determine the number and spatial arrangement of storage tanks for upland pipeline irrigation system design.

Distribution and Characteristics of Organophosphorous pesticides in Shingu Reservoir, Korea (신구저수지의 유기인계 농약 분포와 특성)

  • Hong, Seong-Jin;Choi, Jin-Young;Yang, Dong-Beom;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.318-326
    • /
    • 2007
  • Characteristics of organophoshhorus pesticides (OPs) distribution were investigated in Shingu Reservoir, as a shallow eutrophic agriculture reservoir in Korea. In August 2006, IBP, DDVP and dyfonate were detected in the water column of Singu Reservoir, ranging from 1340.7 to 16030.1 ng $L^{-1}$, 58.7 to 127.6 ng $L^{-1}$ and N.D. to 20.3 ng $L^{-1}$, respectively, However, in September 2006, mevinfos, ethoprofos, phorate, chlorfenvinfos, and methidathion were also found in addition to IBP (202.5${\sim}$213.2 ng $L^{-1}$), DDVP (100.7${\sim}$340.6 ng $L^{-1}$) and dyfonate (N.D.${\sim}$25.0 ng $L^{-1})$. Maximum concentrations of OPs were observed at the middle depth in August, which might be related with photo-oxidation. On the other hand, IBP and DDVP among the OPs were detected in suspended particles, suggesting the relatively active adsorption reactivity. The composition of OPs varied temporally on account of the influence of inflow water from its surrounding areas. In the present study, the observed OPs concentrations seem to be not acute toBic levels to aquatic organisms in Shingu Reservoir, considering the standard monitoring levels of U.S. Environmental Protection Agency and Japan Ministry of Environment.

Effect of Vegetation Types on the Distribution of Soil Invertebrates (식생유형이 토양무척추동물 분포에 미치는 영향)

  • Kim, Myung-Hyun;Bang, Hea-Son;Han, Min-Su;Hong, Hey-Kyoung;Na, Young-Eun;Kang, Kee-Kyung;Lee, Jeong-Taek;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • The aim of this study was to investigate whether differences in the distribution of soil invertebrates among different vegetation types (forest, reservoir, and crop land types) in rural area. A total of 18 orders and 137 species were collected by pitfall traps. Species numbers were the lowest (33 species) at the Chamaecyparis obtusa plantation (St. 6). On the forest sites, the individual number of Hymenoptera was the most abundant, and Acari and Coleoptera was the relatively more abundant than the other sites. On the reservoir sites (Salix chaenomeloides community), the individual number of Collembola was the most abundant, and Diptera was the relatively more abundant than the other sites. On the crop land sites, the individual numbers of Collembola, Hymenoptera, and Araneae were the relatively more abundant than the other orders. The density of Araneae was higher in the reservoir and crop land sites than in the forest sites. From a point of view of biodiversity, although the diversity index(H') was the highest in the mixed broad-leaved forest type (St. 2) with Quercus serrata and Q. acutissima, and the lowest in the upland levee of crop land(St. 11), there was no significant difference among the habitat or vegetation types. According to the community analysis, the soil invertebrates could be divided into 4 groups, the mixed broad-leaved forest type (A group), the plantation or pure forest type (B group), the reservoir type (C group), and the crop land type (D group).