• Title/Summary/Keyword: Agriculture Automation

Search Result 79, Processing Time 0.023 seconds

Effects of Plant Factory Cultural Systems on Growth, Vitamin C and Amino Acid Contents, and Yield in Hydroponically Grown Peucedanum japonicum (식물공장 재배시스템에 따른 방풍나물의 생육, 비타민 C와 아미노산 함량 및 수량에 미치는 영향)

  • Lee, Guang-Jae;Heo, Jeong-Wook;Jung, Chung-Ryul;Kim, Hyun-Hwan;Yoon, Jung-Beom;Kim, Dong-Eok;Nam, Sang Young
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.281-286
    • /
    • 2015
  • This study was carried out to investigate the effects of cultural systems on growth, vitamin C, amino acid content, and yield of Peucedanum japonicum grown in artificial light plant factory. Treatments were given with Nutrient Film Technique (NFT), Medium (Perlite), and Aeroponics. Plant height was the highest in NFT system as 10.2cm, and was the shortest in Perlite as 8.9cm. Fresh leaf weight was the high in order of Perlite, NFT, and Aeroponics. Total phenolic compounds was different from cultural systems in order of Aeroponics as $117.84mg{\cdot}100g^{-1}\;GE$, NFT as $98.57mg{\cdot}100g^{-1}\;GE$ and Perlite as $74.62mg{\cdot}100g^{-1}\;GE$. Total flavonoid content of Aeroponics is $0.12mg{\cdot}100g^{-1}$ but that of NFT and Perlite treatments is not detected. Vitamin C content in Aeroponics as $108.23mg{\cdot}100g^{-1}$ was significant different from Perlite as $88.05mg{\cdot}100g^{-1}$ as and NFT $80.83mg{\cdot}100g^{-1}$. Total dietary fiber content was higher Aeroponics than Perlite and NFT. Cystein content was the highest in Aeroponics as $46.76mg{\cdot}100g^{-1}$ and methione content was the lowest in Perlite as $75.64mg{\cdot}100g^{-1}$. Mineral content of leaves was high in order of K, Ca, P and Mg in all treatments.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

Estimation of Optimum Period for Spring Cultivation of 'Chunkwang' Chinese Cabbage Based on Growing Degree Days in Korea (생육도일(GDDs)에 따른 '춘광' 봄배추의 적정 재배 작기 예측)

  • Wi, Seung Hwan;Song, Eun Young;Oh, Soon Ja;Son, In Chang;Lee, Sang Gyu;Lee, Hee Ju;Mun, Boheum;Cho, Young Yeol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • Knowledge of the optimum cultivation period for Chinese cabbage would help growers especially in spring in Korea. Growth and yield of Chinese cabbage in a temperature gradient chamber was evaluated for the growing periods of 64 days from three set of transplanting dates including March 6, March 20, and April 3 in 2017. Air temperature in the chamber was elevated step-by-step, by $2^{\circ}C$ above the ambient temperature. This increment was divided into three phases; i.e. low (ambient+$2^{\circ}C$, A), medium (ambient+$4^{\circ}C$, B), and high temperature (ambient+$6^{\circ}C$, C). The fresh weight of Chinese cabbage was greater under B and C conditions in the first period and A in the second period, which indicated that GDDs affected the fresh weight considerably. However, leaf growth (number, area, length, and width) did not differ by GDDs. Bolting appeared under A condition in the first period, which was caused by low temperature in the early growth stage. Soft rot was developed under C condition in the second period and all temperature conditions in the third period, which resulted from high temperature in the late stage. Fresh weight increased when GDDs ranged from 587 to 729. However, it decreased when GDDs > 729. The maximum expected yield (16.3 MT/10a) was attained for the growing period of 64 days from transplanting date during which GDDs reached 601. The GDDs for optimum cultivation ranged from 478-724 under which the yield was about 95% (15.5 MT/10a) of maximum fresh weight. Such an optimum condition for GDDs was validated at five main cultivation regions including Jindo, Haenam, Naju, Seosan, and Pyeongtaek in Korea. In these regions, GDDs ranged from 619-719. This suggested that the optimum GDDs for Chinese cabbage cultivation would range from 478-724, which would give the useful information to expect the cultivation periods for ensuring maximum yield.

System Design for Developing the Remote Controlled Sprayer of Pear Trees (배나무 무인 방제기의 개발을 위한 살포 시스템 설계)

  • Lee, Bong Ki;Min, Byeong Ro;Lee, Min Young;Hwa, Yoon Il;Choi, Dong Sung;Hong, Jun Taek;Lee, Dae Weon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.303-308
    • /
    • 2013
  • A remote controlled sprayer has designed, manufactured and experimented to spray well on pear trees with pesticides. This study was executed to automate pest management of pear trees. Types of spray nozzle, which was used on the system, were analyzed experimentally to find an optimal spray equipment configuration with several nozzles. Attributions of ultrasonic sensors were analyzed to adjust spraying distance of an unmanned sprayer system. This paper investigated shapes of pear trees and cultivating environment of pear orchard. In order to select optimal spray environment, liquid distribution was measured while angle of nozzle was changed. Additionally, liquid distribution by distance and sprayed liquid capacity by side distance were measured. According to information of shapes of pear trees and cultivating environment of pear orchard, sprayer frames of an unmanned sprayer system were manufactured and sprayer frames were suitable for interval of pear trees. The sprayer system could adjust width of sprayer frames to 2.5 m and height of sprayer frames to 1.7 m. Optimal angle of nozzle, and optimal distance between objects and nozzle were $15^{\circ}$ and 0.8 m. When side distance was placed from 1.2 m to 1.8 m, sprayed capacity reached to the highest amount.

Economic Comparison Analysis by Automation of Potato Planter (감자 파종기 자동화에 따른 경제성 비교 분석)

  • Choi, Il Soo;Oh, Jong-woo;Yu, Hong Seob;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.89-89
    • /
    • 2017
  • 감자 재배 기계화를 위한 전자동 감자 파종기의 기구적인 개념 설계를 수행하고, 시작기를 제작하였다. 시작기의 성능평가를 통해 기계화에 적합한 감자 재배양식에 대한 연구 필요성이 대두되었다. 본 연구의 목적은 감자 재배 양식에 따른 씨감자 소요량 및 종묘비 금액을 측정하여 기계파종의 경제성 분석함에 있다. 기존의 국내 관행적 감자 재배 작형별 재배방식은 1줄 재배의 경우 재배 형식이 둥근두둑 방식이고 2줄 재배의 경우 평두둑 방식을 채택하고 있다. 기존의 국내 관행적 감자 재배 작형별 재배방식은 1줄 재배의 경우 재배형식이 둥근두둑 방식이며, 2줄 재배의 경우 평두둑 방식을 채택하고 있다. 본 연구에서는 감자 파종기를 이용한 기계화 재배의 경우 평두둑으로 2줄 재배를 안으로 채택하였다. 본 연구는 공시품종인 수미를 이용하여 봄 재배 형식으로 강릉 재배단지에서 실시하였다. 감자 파종은 2016년 3월 31일에 실시하였으며, 재배기간 92일을 소요하여 수확은 2016년 6월 30일에 하였다. 기계파종의 경우 두둑형식은 평두둑 2줄 재배양식 흑색비닐(파종구 세절) 파종 방법으로 전자동 기계파종을 실시하였고, 인력 파종의 경우 기계 파종과 동일한 방식으로 인력으로 실시하였다. 기존의 재래적 방식인 관행파종은 두둑형식은 외줄 1줄 흑색비닐(유공) 파종 방법으로 인력파종을 실시하였다. 관행 파종 방법은 이랑사이 75-80cm, 주간거리 20-25cm, 흙덮기 8-12cm로 재식밀도는 5,000-5,300주/10a로 씨감자 160kg/10a 소요하여 파종하였다. 전자동 감자 파종기를 이용한 기계 파종 재배와 관행 파종 재배 방식과 비교하여 씨감자 소요량 및 종묘비 금액을 비교하였다. 기계파종의 경우 씨감자 절단을 2절로 한 파종 방법의 경우 종자 소요량은 370 kg/10a 이고, 2절과 4절 방법을 혼합한 파종은 204kg/10a, 4절 파종의 경우 185 kg/10a 으로 기존의 관행 파종의 결과인 160 kg/10a 에 비하여 각각 231%, 127%, 116%로 씨감자가 더 소요 되었다. 씨감자 가격은 2016년을 기준 20 kg 당 30,740원으로 계산하였을 경우 파종에 소요된 종묘비는 기계파종의 경우 감자밭 10a에 대하여 씨감자 2절 파종 절단의 경우 569,172원, 2절과 4절 혼합 파종은 312,961원, 4절 절단 파종의 경우 284,586원으로 관행 파종 245,920원으로 나타났다. 기계 파종 시 씨감자 절단 파종 방법에 따라 관행파종 대비 씨감자 종묘비가 16-131% 증가하였다. 하지만 이는 인력파종에 드는 인건비를 제외한 종묘비만 계산한 경제성 분석이므로, 종합적인 경제성 분석은 기계파종기 구입비용 및 투입된 노동력을 고려한 경제성 분석이 추가적으로 필요하다.

  • PDF

Comparative Analysis of TTAK.KO-06.0288-Part3 and Development of an Open-source Communication Library for Greenhouse Control System

  • Kim, Joon Yong;Kim, Sangcheol;Lee, Jaesu
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Purpose: A modern greenhouse consists of various Information and Communications Technology (ICT) components e.g., sensor nodes, actuator nodes, gateways, controllers, and operating softwarethat communicate with each other. The interoperability between these components is an essential characteristic for any greenhouse control system. A greenhouse control system could not work unless the components communicate via common interfaces. The TTAK.KO-06.0288 is an interface standard consisting of four parts. Notably, TTAK.KO-06.0288-Part3, which describes the interface between a greenhouse operating system (GOS) and a greenhouse control gateway (GCG), is the core standard of TTAK.KO-06.0288. The objectives of this study were to analyze the TTAK.KO-06.0288-Part3 standard, to suggest alternative solutions for identified issues, and to develop a library as a proof of the alternative solutions. Methods: The "data field" was analyzed using a comparative analysis method, since it is a data transmission unit of TTAK.KO-06.0288-Part3. It was compared with other parts of TTAK.KO-06.0288 in terms of definition, format, size, and possible values. Although TTAK.KO-06.0288-Part1 and TTAK.KO-06.0288-Part2 do not use a "data field," they have a similar data structure. That structure was compared with the "data field" of TTAK.KO-06.0288-Part3. Results: Twenty-one issues were identified across four categories: inter-standard issues, intra-standard issues, operational issues, and misprint issues. Since some of the issues can raise interoperability problems, 16 alternative solutions were suggested. In order to prove the alternative solutions, an open-source communication library called libtp3 was developed. The library passed 14 unit tests and was adapted to two research. Conclusions: Although TTAK.KO-06.0288-Part3 is an interface standard for communication between a GOS and a GCG, it might not communicate between different implementations because of the identified issues in the standard. These issues could be solved by the alternative solutions, which could be used to revise TTAK.KO-06.0288. In addition, a relevant organization should develop a program for compatibility testing and should pursue test products for smart greenhouses.

Development of an Image Processing Algorithm for Paprika Recognition and Coordinate Information Acquisition using Stereo Vision (스테레오 영상을 이용한 파프리카 인식 및 좌표 정보 획득 영상처리 알고리즘 개발)

  • Hwa, Ji-Ho;Song, Eui-Han;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.210-216
    • /
    • 2015
  • Purpose of this study was a development of an image processing algorithm to recognize paprika and acquire it's 3D coordinates from stereo images to precisely control an end-effector of a paprika auto harvester. First, H and S threshold was set using HSI histogram analyze for extracting ROI(region of interest) from raw paprika cultivation images. Next, fundamental matrix of a stereo camera system was calculated to process matching between extracted ROI of corresponding images. Epipolar lines were acquired using F matrix, and $11{\times}11$ mask was used to compare pixels on the line. Distance between extracted corresponding points were calibrated using 3D coordinates of a calibration board. Non linear regression analyze was used to prove relation between each pixel disparity of corresponding points and depth(Z). Finally, the program could calculate horizontal(X), vertical(Y) directional coordinates using stereo camera's geometry. Horizontal directional coordinate's average error was 5.3mm, vertical was 18.8mm, depth was 5.4mm. Most of the error was occurred at 400~450mm of depth and distorted regions of image.

Development of Automated Quantitative Spray Control System for High Quality Crop Cultivation (고품질 작물 재배를 위한 자동화 정량 방제 제어 시스템 개발)

  • Oh, Seung-Ho;Yang, Seong-Wook;Kim, Hyung-Chan;Kim, Do-Hyeon;Doh, Yang-Hoi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Recently, several researches have been studied on agricultural automation system according to convergence of IT technology with agriculture. An automatic control system of the growth environment in crops is one of the these researches. The controls of damages caused by diseases and insects pest in crops are mainly carried out by manual mode or semi-automatic mode because of farmer's concerns for poor efficiency. But, this situation needs to be improved because it occurs various problems, such as human exposure to toxic pesticides, environmental pollution and waste due to drug overuse. In order to solve these problems, we developed an automatic quantity control system which based on the amount of pesticides for area under cultivation. The amount of pesticides is calculated according to the manufacturer's instruction for pesticides. To verify the effectiveness of our developed automatic system, we also compared with the systems of manual mode and the semi-automatic mode. The experimental results of a pest control performance of an automatic quantity control system showed that automatic system can reduce overuse of drugs. These results suggested that it can be expected to replace the existing system, with equivalent effectiveness to the manual mode.

Applying a smart livestock system as a development strategy for the animal life industry in the future: A review (미래 동물생명산업 발전전략으로써 스마트축산의 응용: 리뷰)

  • Park, Sang-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.241-262
    • /
    • 2021
  • This paper reviewed the necessity of a information and communication technology (ICT)-based smart livestock system as a development strategy for the animal life industry in the future. It also predicted the trends of livestock and animal food until 2050, 30 years later. Worldwide, livestock raising and consumption of animal food are rapidly changing in response to population growth, aging, reduction of agriculture population, urbanization, and income growth. Climate change can change the environment and livestock's productivity and reproductive efficiencies. Livestock production can lead to increased greenhouse gas emissions, land degradation, water pollution, animal welfare, and human health problems. To solve these issues, there is a need for a preemptive future response strategy to respond to climate change, improve productivity, animal welfare, and nutritional quality of animal foods, and prevent animal diseases using ICT-based smart livestock system fused with the 4th industrial revolution in various aspects of the animal life industry. The animal life industry of the future needs to integrate automation to improve sustainability and production efficiency. In the digital age, intelligent precision animal feeding with IoT (internet of things) and big data, ICT-based smart livestock system can collect, process, and analyze data from various sources in the animal life industry. It is composed of a digital system that can precisely remote control environmental parameters inside and outside the animal husbandry. The ICT-based smart livestock system can also be used for monitoring animal behavior and welfare, and feeding management of livestock using sensing technology for remote control through the Internet and mobile phones. It can be helpful in the collection, storage, retrieval, and dissemination of a wide range of information that farmers need. It can provide new information services to farmers.