• Title/Summary/Keyword: Agricultural water supply

Search Result 563, Processing Time 0.036 seconds

Estimation of irrigation supply from agricultural reservoirs based on reservoir storage data

  • Kang, Hansol;An, Hyunuk;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.999-1006
    • /
    • 2019
  • Recently, the quantitative management of agricultural water supply, which is the main source for water consumption in Korea, has become more important due to the effective water management organization of the Korean government. In this study, the estimation method for irrigation supply based on agricultural reservoir storage data was improved compared to previous research, in which drought year selection was unclear, and the outlier data for the rainfall-irrigation supply were not eliminated in the regression analysis. In this study, the drought year was selected by the ratio of annual precipitation to mean annual precipitation and the storage rate observed before the start of irrigation. The outlier data for the rainfall-irrigation supply were eliminated by the Grubbs & Beck test. The proposed method was applied to nine agricultural reservoirs for validation. As a result, the ratio of annual precipitation to mean annual precipitation is less than 53% and the storage rate observed before the start of irrigation is less than 55% it was judged to be the drought year. In addition, the drought supply factor, K, was found to be 0.70 on average, showing closer results to the observed reservoir rates. This shows that water management at the real is appling drought year practice. It was shown that the performance of the proposed method was satisfactory with NSE (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determiniation) except for a few cases.

Development of agricultural reservoir water supply simulation system (농업용 저수지 용수공급 모의 시스템의 개발)

  • Jun, Sang Min;Kang, Moon Seong;Song, Inhong;Song, Jung-Hun;Park, Jihoon;Kee, Woosuk
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.103-114
    • /
    • 2014
  • The objective of this study was to develop agricultural reservoir water supply simulation system to assess water cycle of agricultural water district. Developed system was named as ARWS (Agricultural Reservoir Water supply simulation System). ARWS consists of platform and independent modules. In ARWS, reservoir inflow was calculated using Tank model, and agricultural water supply was calculated considering current farming period and mid-summer drainage. ARWS was applied to simulate water level of Gopung and Tapjung reservoir in 2011 - 2012. The results were compared to simulation results of HOMWRS and observed data. Average $R^2$, EI, RMSE of ARWS were 0.76, 0.46, 1.78 (m), average $R^2$, EI, RMSE of HOMRWS were 0.88, -0.14, 2.37 (m) respectively. Considering statistical variances, water level simulation results of ARWS were more similar to observed data than HOMWRS. ARWS can be useful to estimate reservoir water supply and assess hydrological processes of agricultural water district.

Evaluation on Water Supply Capability of Instream Flow of Four Dam at the Yongsan River (영산강 4개댐 하천유지용수 공급능력 검토)

  • Jang, Jung-Seok;Chung, Jin-Ho;Lee, Tae-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.471-474
    • /
    • 2003
  • An attempt was made to evaluate on water supply capability of river management flow of four agricultural dam at the Yongsan River which is required instream flow because of water pollution. As a result, supply capability of agricultural use was sufficient, but supply capability of river management flow was insufficient.

  • PDF

Analysis of the Emergency Water Supply Capacity in Agricultural Reservoirs Using K-HAS and Ratio Correction Factors (K-HAS와 비율보정 계수를 이용한 농업용 저수지의 비상연계 용수공급 가능량 분석)

  • Kim, Hayoung;Lee, Sang-Hyun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.59-71
    • /
    • 2023
  • As the frequency of drought increases due to climate change, water scarcity in agriculture would be a main issue. However, it seems difficult to solve the water scarcity by securing alternative water sources. The aim of this study is to analyze optimal water supply capacity of agricultural reservoir for emergency operation connecting reservoirs and dams. First, we simulated the water storage of agricultural reservoir playing the role emergency water supplier to other water facility such as dams and other reservoirs. In particular, the results of simulation of water storage through K-HAS model was calibrated using the optimization process based on ratio correction factors of outflow and inflow. Finally, the optimal amount of water supply securing water supply reliability in emergency interconnection operation was analyzed. The results of this study showed that Janchi reservoir could supply 12.8 thousand m3/day maintaining 90 % water supply reliability. The result of this study could suggest the standard for connecting water facilities as emergency water supply.

Evaluation on Water Supply Capability by Linkage Water Balance of Irrigation Facilities (연계 물수지 분석에 의한 농업용수 공급량 평가)

  • Jang, Jung-Seok;Chung, Jin-Ho;Lee, Tae-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.318-323
    • /
    • 2005
  • This research evaluates agricultural water supply capabilities for water computing demand and supply for water of the whole water system of Ansung stream by carrying out basin water balance classified by irrigation facility of water system of Ansung stream.

  • PDF

Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline (현장조사 관개 기준에 따른 농업용 저수지 운영 분석)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pu Reun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.

Estimation of Regional Agricultural Water Demand over the Jeju Island (제주도 권역별 농업용수 수요량 산정에 대한 고찰)

  • Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin-Sung;Lim, Chan-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.639-649
    • /
    • 2013
  • Over 96.2% of the agricultural water in Jeju Island is obtained from groundwater and there are quite distinct characteristics of agricultural water demand/supply spatially because of regional and seasonal differences in cropping system and rainfall amount. Land use for cultivating crops is expected to decrease 7.4% (4,215 ha) in 2020 compared to 2010, while market garden including various vegetable crop types having high water demand is increasing over the Island, especially western area having lower rainfall amount compared to southern area. On the other hand, land use for fruit including citrus and mandarin having low water demand is widely distributed over southern and northern part having higher rainfall amount. The agricultural water demand of $1,214{\times}10^3\;m^3/day$ in 2020 is estimated about 1.39 times compared to groundwater supply capacity of $874{\times}10^3\;m^3/day$ in 2010 with 42.4% of eastern, 103.1% of western, 61.9% of southern, and 77.0% of northern region. Moreover, net secured amount of agricultural groundwater would be expected to be much smaller due to regional disparity of water demand/supply, the lack of linkage system between the agricultural water supply facilities, and high percentage of private wells. Therefore, it is necessary to ensure the total net secured amount of agricultural groundwater to overcome the expected regional discrepancy of water demand and supply by establishing policy alternative of regional water supply plan over the Island, including linkage system between wells, water tank enlargement, private wells maintenance and public wells development, and continuous enlargement of rainwater utilization facilities.

Water Supply Reliability Revaluation For Agricultural Water Supply Pattern Changes Considering Climate Changes (기후변화에 따른 농업용수공급패턴의 변화로 인한 이수안전도변화분석)

  • Choi, Young-Don;Ahn, Jong-Seo;Shin, Hyun-Suk;Cha, Hyung-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.273-277
    • /
    • 2010
  • This research was performed to examine changes in the timing of the growth of crops along with changes in temperatures due tochanges and to analyze the change of water-supply-reliability by adding an analysis of the change of agricultural water supply patterns in the basin area of Miryang dam in Korea. Had-CM3 model from U.K. was the tool adopted for the GCM model, a stochastic, daily-meteorology-generation-model called LARS-WG was alsoused for downscaling and for the climate change scenario (A1B) which represents Korea's circumstances best. First of all, to calculate changes in the timing of the growth of crops during this period, the theory of GDD was applied. Except for the period of transplanting and irrigation, there was no choice but to find the proper accumulated temperature by comparing actual temperature data and the supply pattern of agricultural use due to limited temperature data. As a result, proper temperatures were found for each period. $400^{\circ}C$ for the preparation period of a nursery bed, $704^{\circ}C$ for a nursery bed's period, $1,295^{\circ}C$ for the rice-transplanting period, $1,744^{\circ}C$ for starting irrigation, and $3,972^{\circ}C$ for finishing irrigation. To analyze future agricultural supply patter changes, the A1B scenario of Had-CM3 model was adopted, and then Downscaling was conducted adopting LARS-WG. To conduct a stochastical analysis of LARS-WG, climate scenarios were generated for the periods 2011~2030, 2046~2065, 2080~2099 using the data of precipitation andMax/Min temperatures collected from the Miryang gauging station. Upon reviewing the result of the analysis of accumulated temperatures from 2011~2030, the supply of agricultural water was 10 days earlier, and in the next periods-2046~2065, 2080~2099 it also was 10 days earlier. With these results, it is assumed that the supply of agricultural water should be about 1 month ahead of the existing schedule to meet the proper growth conditions of crops. From the results of the agricultural water supply patterns should be altered, but the reliability of water supply becomes more favorable, which is caused from the high precipitation change. Furthermore, since the unique characteristics of precipitation in Korea, which has high precipitation in the summer, water-supply-reliability has a pattern that the precipitation in September could significantly affect the chances of drought the following winter and spring. It could be more risky to make changes to the constant supply pattern under these conditions due to the high uncertainty of future precipitation. Although, several researches have been conducted concerning climate changes, in the field of water-industry, those researches have been solely dependent on precipitation. Even so, with the high uncertainty of precipitation, it is difficult for it to be reflected in government policy. Therefore, research in the field of water-supply-patterns or evapotranspiration according to the temperature or other diverse effects, which has higher reliability on anticipation, could obtain more reliable results in the future and that could result in water-resource maintenance to be safer and a more advantageous environment.

  • PDF

Evaluating Future Stream Flow by Operation of Agricultural Reservoir Group considering the RCP 8.5 Climate Change Scenario (RCP 8.5 기후변화 시나리오를 고려한 농업용 저수지군 운영에 따른 미래 하천유량 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.113-122
    • /
    • 2015
  • This study aims to evaluate future stream flow by the operation of agricultural reservoir group at the upper stream of the Miho River. Four agricultural reservoirs with storage capacities greater than one million cubic meters within the watershed were selected, and the RCP 8.5 climate change scenario was applied to simulate reservoir water storage and stream flow assuming that there are no changes in greenhouse gas reduction. Reservoir operation scenarios were classified into four types depending on the supply of instream flow, and the water supply reliability of each reservoir in terms of water supply under different reservoir operation scenarios was analyzed. In addition, flow duration at the watershed outlet was evaluated. The results showed that the overall run-off ratio of the upper stream watershed of the Miho River will decrease in the future. The future water supply reliability of the reservoirs decreased even when they did not supply instream flow during their operation. It would also be difficult to supply instream flow during non-irrigation periods or throughout the year (January-December); however, operating the reservoir based on the operating rule curve should improve the water supply reliability. In particular, when instream flow was not supplied, high flow increased, and when it was supplied, abundant flow, ordinary flow, and low flow increased. Drought flow increased when instream flow was supplied throughout the year. Therefore, the operation of the agricultural reservoirs in accordance with the operating rule curve is expected to increase stream flow by controlling the water supply to cope with climate change.

Methodology for Estimating Agricultural Water Supply in the Han River Basin (한강수계의 농업용수 공급량 조사방법의 개발)

  • Im, Sang-Jun;Park, Seung-U;Kim, Hyeon-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.765-774
    • /
    • 2000
  • The purpose of this study are to develop a realistic methodology to estimate agricultural water supply for rice paddy fields from reservoirs, pumping stations, intake structures, and tube wells on river basin scale. Agricultural water supply from irrigation reservoirs are estimated using the daily or ten day's storage rate data and DIROMmaily Inigation Reservoir Operation Model) model. Estimation of daily water supply from pumping station are carried out from the annual water use with typical water supply patterns. The daily groundwater withdrawn are investigated from the gross water requirement for rice and the design capacity of tube well. And, the daily intake discharge are estimated the minimum amount from the gross water requirement, stream discharge, and the design capacity. During 1993 to 1997, the annual water supply for irrigation in the Han river basin ranged from 569 to 709 million $\textrm{m}^3/yr$, and the mean was estimated to be 640 million $\textrm{m}^3/yr$.

  • PDF