• Title/Summary/Keyword: Agricultural nonpoint source pollution

Search Result 112, Processing Time 0.034 seconds

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF

Implementation of Polyacrylamide in the Agricultural Environment and its Recent Review

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.440-448
    • /
    • 2016
  • Nonpoint sources of pollution (NPS) is defined as diffuse discharges of pollutants (e.g., nutrient, pesticide, sediment, and enteric microorganism) throughout the natural environment and they are associated with a variety of farming practices. Previous studies found that water soluble anionic polyacrylamide (PAM) is one of the highly effective measures for enhancing infiltration, reducing runoff, preventing erosion, controlling nonpoint source of pollutants, and eventually protecting soil and water environment. Potential benefits of PAM treatment in agricultural soil and water environments have been revealed by many research and they include low cost, easy and quick application, and suitability for use with other Best Management Practices (BMPs) for NPS control. This study reviews the various applications of PAM and discusses its further potentials in agricultural environment.

Hourly SWAT Watershed Modeling for Analyzing Reduction Effect of Nonpoint Source Pollution Discharge Loads (비점원오염 저감효과 분석을 위한 시단위 SWAT 유역 모델링)

  • Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.

Runoff Characteristics Comparison of Nonpoint Source Pollution for Two Adjacent Stream Watersheds using SWAT Model (SWAT 모형을 이용한 두 인접 하천유역간의 비점오염 유출특성 비교연구)

  • Jung, Chung-Gil;Joh, Hyung-Kyung;Park, Jong-Yoon;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.91-101
    • /
    • 2012
  • This study is to assess the runoff characteristics of nonpoint source pollution loads for Jecheon and Jangpyeong stream watersheds located in the upstream of Chungju lake. The SWAT (Soil and Water Assessment Tool), a physically based distributed hydrological model was calibrated and verified using 5 years (2006 to 2010) streamflow and water quality data. The Nash-Sutcliffe model efficiency for streamflow was 0.60~0.92 and the determination coefficients for sediment, Total Nitrogen (T-N), and Total Phosphorous (T-P) were 0.53~0.71, 0.51~0.91 and 0.38~0.85 respectively. The results showed that the Sediment, T-N, and T-P of Jangpyeong stream were 40.0~60.9 %, 34.8~64.1 % and 76.5~83.9 % higher than Jecheon stream watershed during wet days. The results evaluated high NPS loads at Jangpyeong stream because the percentage of urban and upland crop cultivation area Jangpyeong stream watershed was higher than Jecheon stream watershed.

Nonpoint Source Pollution Loadings from Land Uses on Small Watersheds (소유역의 토지이용에 따른 비점원오염 부하량)

  • 박승우;류순호;강문성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.115-127
    • /
    • 1997
  • Nonpoint source (NPS) pollution from small watersheds has recently been brought into attention as a potential pollutant to streams and tnbutaries, as majority of them are experiencing water quality degradation. This necessiates the quantification of NPS loadings from agricultural and forested lands. And this study attempts to quantify daily loadings from forested and farm lands using hydrologic and water quality monitoring. The hydrologic monitoring program consists of five water level gauging stations along creeks and stream at the Banweol reservoir watershed having 1220 hectare in size. Water sam pies were taken and analyzeel periodically at the streamf low gaging sites and tributaries. Soil samples were also taken and the chemical constitutes analyzed. The primary results indicate that the major sources of pollution were small villages and dairy farms on the watersheds, constituting two-third of total nutrient loadings to the reservoir. However, the loadings from paddies and upland areas may cause a problem to the water quality of the reservoir and stream as the measured levels of total nitrogen and phosporus are not low enough to ignore. Further studies are needed to quantify the effects of landuses and treatments at a watershed scale.

  • PDF

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

Water Quality Improvement in Estuary using Wetland and Pond (습지와 유수지를 이용한 하구담수호 수질개선)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Moon, Yong-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.377-380
    • /
    • 2002
  • Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. In this study, the field experiment to reduce nonpoint source pollution loadings from agricultural drainage and polluted stream waters using wetland and pond system was performed. The removal rate of $BOD_5$, TSS, TN, TP, and $Chl-{\alpha}$ was 52%, 90%, 56%, 59%, and 81%, respectively. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall the water quality improvement was apparent in wetland and pond system.

  • PDF

Water Quality Improvement of Inflow Stream in Estuary using Wetland and Pond (습지와 유수지를 이용한 하구담수호 유입하천의 수질개선)

  • Koo, Won-Suk;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.587-590
    • /
    • 2003
  • Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. In this study, the field experiment to reduce nonpoint source pollution loadings from agricultural drainage and polluted stream waters using wetland and pond system was performed. The removal rate of $BOD_5$, TSS, T-N and T-P during growing season was 7.2%, 64.3%, 57.0%, and 60.3%, respectively. And removal rate of $BOD_5$, TSS, T-N and T-P during winter was -49.5%, -56.1 %, 30.5%, and 47.1%, respectively. In this study, pond-wetland system is more effective than wetland-pond system to remove nutrient.

  • PDF

Analysis of Field Experimental Data for Water Quality Improvement of Tributary Stream to Estuarine Reservoir Using Constructed Wetland System (인공습지를 이용한 하구담수호 유입하천수 수질개선 현장실험결과 분석)

  • Ham, Jong-Hwa;Yoon, Chun-G.;Koo, Won-Seok;Kim, Hyung-Chul;Shin, Hyun-Bhum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.141-153
    • /
    • 2004
  • Wetland system is widely accepted as one of natural water purification systems around the world for nonpoint sources pollution control. Constructed wetlands have become a popular technology for treating contaminated surface and waste water. In this study, the field experiment to reduce nonpoint source pollution loadings from polluted stream waters using wetland system was performed from June 2002 to March 2004. Four wetlands were used and the size of each one was 0.8ha. Water of Dangjin stream flowing into Seokmun estuarine reservoir was pumped into wetlands. Inflow and hydraulic residence time of the system was 500 $m^3$/day∼1,500 $m^3$/day, 2∼5 days, respectively. After 2 year operation, plant-coverage of the wetlauds was about 70% from bare soil surface at initial stage . Average water quality of the influent was $BOD_5$ 4.17 mg/L, TSS 18.45 mg/L, T-N 4.32 mg/L, and T-P 0.30 mg/L. The average removal rate of $BOD_5$, TSS, T-N and T-P during the study period was 5.6%, 46.6%, 45.7%, and 54.8%, respectively. Organic ($BOD_5$) removal rate was low and the reason might be low influent concentration. Wetland removal rate of T-P was about 10% higher than T-N. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall, the wetland system was found to be adequate for treating polluted water stream with stable removal efficiency even during the winter period. Most of the nonpoint source pollutions from watershed are transported by streams or ditches, and they could be controled by constructed wetland system before entering the lake or reservoir.

Development and Application of a GIS Interface for the Agricultural Nonpoint Source Pollution (AGNPS) Model(II) -Modification of AGNPS Model- (농업비점원오염모형을 위한 GIS 호환모형의 개발 빛 적용(II) -AGNPS모형의 수정-)

  • 김진택;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.53-61
    • /
    • 1997
  • The interface system, GIS-AGNPS was to be validated with field data from six tested small watersheds ranging from 0.7 to 4.7$km^2$ in size which have steep topography and complex landuses. The model validation involved the calibration of input parameters and component modifications, in efforts to develop a model applicable to general uses for identifying and controlling nonpoint source pollution loads from agricultural watersheds. The simulated direct runoff from AGNPS was in good agreement with the field data for the averaged antecedent moisture conditions or AMC- II. The results differed, however, from the observed for AMC- I or III. A simple empirical relationship was proposed to estimate the curve number for AMC- I or m from AMC- II, which was found to result in simulated runoff close to the observed. The peak runoff relationship at AGNPS was also modified to reflect the watershed conditions and tested satisfactorily with the field data. The simulated sediment yields from the watersheds were fair as compared to the observed. Nutrient loads simulated from the model were different from the observed data. It appeared that the model was incapable of adequate depicting nutrient transport processes at paddy field and other landuses of the tested watersheds. Some modifications may be needed for the accurate representing the processes at paddy field.

  • PDF