• Title/Summary/Keyword: Agricultural groundwater usage

Search Result 22, Processing Time 0.029 seconds

The Study on the Relationship between Land Use and Groundwater Quality in the Rapidly Urbanized Area (도시화가 빠르게 진행된 지역의 토지이용과 지하수 수질과의 관계에 대한 연구)

  • An, Jung-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.97-108
    • /
    • 2002
  • The use of land at the time of investigation of groundwater quality in the rapidly urbanized Bu-chon city is classified into 5 categories based on the change process of land use. The difference in groundwater quality according to the land use and its usage period is tested by non-parametric statistical procedures. The seven constituents of water quality with the highly frequent detection in the area for this study are used for the statistical test. The shallow groundwater quality within the areas of the same land use at the time of investigation varies significantly according to the period of land usage. The concentration of KMnO$_4$consumed and hardness is significantly higher in the old residential area (of more than 20 years old) than in the younger one (of less than 10 years old). The quality of the shallow groundwater is also significantly different among the three categories with the similar period of land usage (of more than 15 years old). The concentration of No$_3$-N, hardness and total solid is significantly higher in the residential area than in the agricultural one (namely, the area used as paddy fields 2 to 5 years ago). The median concentration of these constituents is 2.2 to 3.8 times higher in the residential area than in the agricultural one. The concentration of NO$_3$-N, KMnO$_4$, consumed and Cl is significantly higher in the industrial area than in the agricultural one. The median concentration of these constituents is 5.5 to 18 times higher in the industrial area than in the agricultural one. The concentration of KMnO$_4$consumed is significantly higher in the industrial area than in the residential area. The median concentration of these constituents is 12 times higher in the industrial area than in the residential one. The spatial distribution of shallow groundwater quality in the rapidly urbanized area is closely related to the period of land usage as well as the land use, which is presumed to be attributed to the difference in the concentration and leakage rate of the contaminants leaking from damaged sewer into shallow groundwater.

Prediction of the Salinization in Reclaimed Land by Soil and Groundwater Characteristics

  • Jeon, Jihun;Kim, Donggeun;Kim, Taejin;Kim, Keesung;Jung, Hosup;Son, Younghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.131-140
    • /
    • 2021
  • It is becoming more important to utilize reclaimed lands in South Korea, due to the increasing competition for its usage among different sectors. However, the high groundwater level and poor permeability are exposing them to deterioration by salinization. Salinization is difficult to predict because the pattern changes according to various characteristics of soil and groundwater. In this study, the capillary rising time was studied by the water content profile in the soil. The prediction equation of soil salinity was developed based on simulation result of the CHEMFLO model. to enable prediction considering various soil water content and groundwater level. The two terms constituting the equation showed the coefficients of determination of 0.9816 and 0.9824, respectively. Using the prediction equation of the study, the surface salinity can be easily predicted from the initial surface salinity and the salinity of the groundwater. In the future, more precise predictions will be possible with the results of studies on the hydraulic characteristics of various reclaimed soils, changes in water content profile by seasonal and climate events.

Development of a Predictive Model for Groundwater Use (지하수 이용량 추정기법 개발)

  • 우남칠;조민조;김남종
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.297-309
    • /
    • 1994
  • For a total of 210 city and Kun areas in Korea, a model was developed to predict the amount of groundwater use at each area. At first, the total areas were classified into 3 groups by the characteristics of groundwater use: residential(87), industrial(27) and agricultural (96) areas. Among them, type areas, represented by the dominant groundwater usage for typical purposes, were selected: residential(22), industrial(8) and agricultural(32) areas. Data for the various factors possibly related to the groundwater use were statistically analyzed. The factors include, 1) agricultural area, 2) industrial area, 3) adininistrative unit area(city or Kun), 4) population, 5) groundwater capadty for community water supply, 6) average water supply for a person per day, 7) agricultural water-use, 8) industrial water-use, 9) residential wateruse, 10) rates of community water supply. The data were correlated to the total amount of groundwater use, and the correlations tested at the 95% and 99% significance levels. Influential, significantly related, factors were identified from the tests. Using the multiple regression method with the influential factors, predictive equations were drawn to calculate the amount of groundwater use for residential-industrial and agricultural areas, respectively. The equations were calibrated to minimize the RMS(root mean square) of the differences between predicted and observed groundwater use. After the validation with future data, the model can be utilized in the regional development plans to predict the maximum groundwater demand at each area.

  • PDF

Changes of Chemical Contents in Groundwater at Controlled Horticulture in Honam Area (호남지역의 시설원예재배지 지하수중 화학성분 변동요인 조사)

  • Lee, Deog-Bae;Lee, Kyeong-Bo;Rhee, Kyeong-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.348-354
    • /
    • 1996
  • This study was carried out to investigate factors influencing on the groundwater quality at controlled horticulture in Honam area in 1995. The deeper groundwater sampling, the lower concentrations of $NH_4-N$ and $NO_3-N$ were observed. There was no difference in concentrations of $SO_4\;^{2-}$ and $Na^+$ in the groundwater below 15m. Contents of $NH_4-N$, $NO_3-N$ and $PO_4\;^{3-}$ in groundwater were the highest at rice transplanting season(the late May) and that of $SO_4\;^{2-}$, $Na^+$ and $Cl^-$ were the highest at dry season(the mid-February). Continuous cultivation of horticultural crops showed higher concentration of $NH_4-N$, $NO_3-N$, $PO_4\;^{3-}$, $Na^+$ and $Cl^-$ in groundwater than rotational culture with rice. The longer cultivation years with horticultural crops, the higher concentrations of $NO_3-N$, $PO_4\;^{3-}$, $SO_4\;^{2-}$ and $Cl^-$ were shown, and constitutional ratio of $NO_3-N$ among the anions increased gradually. Nitrate-N level, exceeded 20mg/l, the critical level for agricultural usage, frequently at Yongjinmyeon Wanju and Janglockdong Kwangju, and $PO_4\;^{3-}$ levels were higher at Seogtandong Iksan than the other places.

  • PDF

Estimation of Groundwater Usage for Water Curtain Cultivation using a Rating Curve (수위-유량 관계곡선을 이용한 수막재배용 지하수 사용량 추정)

  • Lee, Bong-Joo;Kim, YongCheol;Cho, Byung-Wook;Yoon, Uk;Ha, Kyoolchul;Lee, Byeong-Dae;Moon, Sang-Ho;Yoon, Philsun;Kim, Sung-Yun
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A method is proposed to estimate groundwater usage for water curtain cultivation (WCC) using a rating curve, and it is applied to field measurements of groundwater discharge used for WCC in Wangjeon-ri, Nonsan. During the winter season, the hydraulic components of irrigation ditches in the study area consist mainly of direct run-off and groundwater discharged from nearby pumping wells. Changes in stage of the ditches were monitored, and a baseflow separation method was applied to remove increments in stage due to direct run-off. The resulting records of stage were translated to groundwater discharge by applying the-stage-discharge relation. The estimated average groundwater discharge for the WCC in Wangjeon-ri was 10,900 m3/d or 420 m3/d/ha when the estimation is normalized by the total area for WCC facilities of this region. Applying this estimation (420 m3/d/ha) to the entire area of the WCC in Korea (10,746 ha),and considering the number of pumping days for the WCC (120 days/year), the total ground water usage for the WCC nation-wide is estimated to be 0.54 billion m3. This is equivalent to 32% of the total groundwater discharge for agricultural use in Korea (1.7 billon m3).

Spatial-temporal Variations of Nitrate Levels in Groundwater of Jeju Island, Korea: Evaluation of Long-term (1993-2015) Monitoring Data (제주도 지하수질산염 농도의 시·공간적변화 특성: 장기(1993-2015) 모니터링 자료의 평가)

  • Kim, Ho-Rim;Oh, Junseop;Do, Hyun-Kwon;Lee, Kyung-Jin;Hyun, Ik-Hyun;Oh, Sang-Sil;Kam, Sang-Kyu;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.15-26
    • /
    • 2018
  • The spatio-temporal variations of nitrate concentrations in groundwater of Jeju Island were evaluated by an analysis of time series groundwater quality data (N = 21,568) that were collected from regional groundwater monitoring (number of wells = 4,835) for up to 20 years between 1993 and 2015. The median concentration of $NO_3-N$ is 2.5 mg/L, which is slightly higher than those reported from regional surveys in other countries. Nitrate concentrations of groundwater in wells tend to significantly vary according to different water usage (of the well), administrative districts, and topographic elevations: nitrate level is higher in low-lying agricultural and residential areas than those in high mountainous areas. The Mann-Kendall trend test and Sen's slope analysis show that nitrate concentration in mid-mountainous areas tends to increase, possibly due to the expansion of agricultural areas toward highland. On the other hand, nitrate concentrations in the Specially Designated Groundwater Quality Protection Zones show the temporally decreasing trend, which implies the efficiency of groundwater management actions in Jeju. Proper measures for sustainable groundwater quality management are suggested in this study.

Groundwater Quality and Pollution Characteristics at Seomjin River Basin: Pollution Source and Risk Assessment (섬진강 주변 지하수의 수질 및 오염특성: 오염원 및 유해성 평가)

  • Na Choon-Ki;Son Chang-In
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.261-272
    • /
    • 2005
  • The groundwaters in the basin of Seomjin River are classified mainly into Na-Cl type with high EC and $NaHCO_3$ type with low EC, and are characterized by enriched $K^+,\;Mg^{2+},\; NO_3^-,\; and\;SO_4\;^{2-}$ contents. The epm fraction of $Na^+Cl^-$ in TDS increases in general with increasing EC of groundwater. The correlation patterns among dissolved ions indicate that $Na^+\;and\;Cl^-$ are derived mainly from intruded seawater, and $K^+,\;Mg^{2-},\;and\;SO_4\;^{2-}$ from anthropogenic source such as a chemical fertilizer. The groundwaters that exceed the recommended limits far agricultural irrigation water contains $23\%\;of\;Cl^-$ reflecting sea-water intrusion, but $50\%\;of\;NO_3^-$ as an anthropogenic pollution, among the wells investigated. In risk assessment of groundwaters by the EC-SAR relationship, only $40\%$ of the groundwaters shows the suitable quality for agricultural irrigation water without any sodium and salinity hazards. Consequently, the pollution sources that cause degradation of groundwater quality in the basin of Seomjin River are the usage of chemical fertilizers and the intrusion of seawater, resulted primarily from the extension of riverward backflow of seawater and secondarily from the overpumping of groundwater.

Use of Herbicides and the Residues (제초제 사용과 잔유)

  • 문영희;전재철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.06a
    • /
    • pp.21-38
    • /
    • 1999
  • Herbicide is an essential agricultural chemical in the modern agriculture. Due to its bioactivity, however, risk of herbicide use against non-target organisms should be seriously considered. Among the unfavorable aspects given by herbicide, the residue is the most important because herbicide residue in soil and agricultural product is closely related to human safety. The residue in soil and crop is dependent on conditions of soil, weather, herbicide use and crop cultivation, etc. In general, the residue in soil or agricultural product in Korea is known to be not serious at this moment, except for some problems like carry-over effect on succeeding crops. To secure safety of herbicide use for the health, soil ecology and other environment, researches on herbicide residue including monitoring survey should be done more frequently and extensively. Safety guide for herbicide usage should be kept by farmers and development of long toxic herbicide should be accelerated.

  • PDF

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Performance Analysis of Ground Heat Exchanger in Combined Well and Open-Closed Loops Geothermal (CWG) System (밀폐형과 개방형이 결합된 복합지열시스템의 지중열교환기 성능 분석)

  • Park, Youngyun;Song, Jae-Yong;Lee, Geun-Chun;Kim, Ki-Joon;Mok, Jong-Koo;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.23-29
    • /
    • 2017
  • This study was conducted to evaluate performance of geothermal heat exchanger (GHE) in the combined well and open-closed loops geothermal (CWG) systems. The CWG systems were designed to combine open loop geothermal heat pumps and closed loop geothermal heat pumps for high energy efficiency. GHE of the CWG systems could be installed at pumping wells for agricultural usage. To get optimal heat exchange capacity of GHE of the CWG systems, 4 GHEs with various materials and apertures were tested at laboratory scale. Polyethylene (PE) and stainless steel (STS) were selected as GHE materials. The maximum heat exchange capacity of GHEs were estimated to be in the range of 33.0~104 kcal/min. The heat exchange capacity of STS GHEs was 2.4~3.2 times higher than that of PE GHE. The optimal cross section area of GHE and flow rate of circulating water of GHE were estimated to be $2,500mm^2$ and 113 L/min, respectively. For more complicated GHE of the CWG systems, it is necessary to evaluate GHEs at various scales.