• 제목/요약/키워드: Agricultural drought index

검색결과 156건 처리시간 0.027초

농업가뭄의 수문기상학적 특성 및 공간적 분포에 관한 연구 (Hydrometeorological Characteristics and The Spatial Distribution of Agricultural Droughts)

  • 장중석
    • 한국농공학회논문집
    • /
    • 제61권2호
    • /
    • pp.105-115
    • /
    • 2019
  • For 159 administrative areas, SPI(Standardized Precipitation Index), ARDI(Agricultural Reservoir Drought Index) and ARDIs(Agricultural Reservoir Drought Index Simulated) were developed and applied to analyze the characteristics of agricultural drought index and agricultural droughts. In order to identify hydrometeorological characteristics of agricultural droughts, SPI, ARDI and ARDIs were calculated nationwide, and the applicability was compared and examined. SPI and ARDI showed significant differences in time and depth of drought in both spatial and temporal. ARDI and ARDIs showed similar tendency of change, and ARDIs were considered to be more representative of agricultural drought characteristics. The results of this study suggest that agricultural drought is a problem to be solved in the medium and long term rather than short term due to various forms of development, complexity of development, and difficulty in forecasting. Therefore, it is concluded that a preliminary and systematic approach is needed in consideration of meteorological, hydrological and hydrometeorological characteristics rather than a fragmentary approach, and that an agricultural drought index is needed to quantitatively evaluate agricultural drought.

농업가뭄인자 미계측 지역의 농업가뭄 추정을 위한 기상학적 가뭄지수의 활용성 평가 (Availability Assessment of Meteorological Drought Index for Agricultural Drought Estimation in Ungauged Area of Agricultural Drought Parameter)

  • 박민우;김선주;권형중;김필식;강승묵;이재혁
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.127-136
    • /
    • 2017
  • The object of this study was to assess availability of meteorological drought index for agricultural dorught estimation in ungauged area of agricultural drought parameters which are reservoir water level and soil moisture. The IADI (Integrated Agricultural Drought Index) and the SPI (Standard Precipitation Index), which are the criteria for determining agricultural drought and meteorological drought, were calculated and compared. For this purpose, the droughts that occurred in the Baeksan reservoir in Gimje and the Edong reservoir in Suwon were evaluated by using the IADI and SPI drought indecies. In addition, we compared and analyzed the depth of drought based on the two drought indices. Evaluations derived form the IADI and SPI showed that the standard precipitation index tended to indicate the occurrence of drought earlier than the integrated agricultural drought index. However, the integrated agricultural drought index was better than the standard precipitation index at evaluating the severity of drought during the period of irrigation. The relationship between these two drought indices seems to be useful for decision making in the case of drought, and it is considered that more studies are needed to examine the applicability of these drought indexes.

Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가 (Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea)

  • 이희진;남원호;윤동현;홍은미;김대의
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

증발산 기반 ESI와 EDDI를 활용한 2022년 남부지역의 농업 가뭄 분석 (Comparative Analysis of the 2022 Southern Agricultural Drought Using Evapotranspiration-Based ESI and EDDI)

  • 박광수;남원호;이희진;서찬양;하태현;조영준
    • 한국농공학회논문집
    • /
    • 제66권3호
    • /
    • pp.25-37
    • /
    • 2024
  • Global warming-induced drought inflicts significant socio-economic and environmental damage. In Korea, the persistent drought in the southern region since 2022 has severely affected water supplies, agriculture, forests, and ecosystems due to uneven precipitation distribution. To effectively prepare for and mitigate such impacts, it is imperative to develop proactive measures supported by early monitoring systems. In this study, we analyzed the spatiotemporal changes of multiple evapotranspiration-based drought indices, focusing on the flash drought event in the southern region in 2022. The indices included the Evaporative Demand Drought Index (EDDI), Standardized Precipitation Evapotranspiration Index (SPEI) considering precipitation and temperature, and the Evaporative Stress Index (ESI) based on satellite images. The Standardized Precipitation Index (SPI) and SPEI indices utilized temperature and precipitation data from meteorological observation stations, while the ESI index was based on satellite image data provided by the MODIS sensor on the Terra satellite. Additionally, we utilized the Evaporative Demand Drought Index (EDDI) provided by the North Oceanic and Atmospheric Administration (NOAA) as a supplementary index to ESI, enabling us to perform more effective drought monitoring. We compared the degree and extent of drought in the southern region through four drought indices, and analyzed the causes and effects of drought from various perspectives. Findings indicate that the ESI is more sensitive in detecting the timing and scope of drought, aligning closely with observed drought trends.

농업가뭄의 평가를 위한 가뭄지수의 적용성 분석

  • 박기욱;김진택;주욱종;이용직
    • 한국관개배수논문집
    • /
    • 제13권1호
    • /
    • pp.72-81
    • /
    • 2006
  • The objictive of this study is to analyze regional drought using agricultural drought indicator. Toforecast and evaluate the drought, the drought indices for agriculture were applied. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. There are many drought index to analyze and evaluate the drought. However, these indices do not exactly explain all drought events. Thus, we select 4 drought indices to evaluate agricultural drought:reservoir storage index, 3-month delayed SPI, mean rainfall index, and dry day index. Using these ineices, six drought stages are classified. The results show that agricultural drought could be apprppriately analyzed and evaluated by agricultural drought stage and four drought indices.

  • PDF

저수지 가뭄지수를 활용한 농업가뭄 위험도 평가 (Agricultural Drought Risk Assessment using Reservoir Drought Index)

  • 남원호;최진용;장민원;홍은미
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.41-49
    • /
    • 2013
  • Drought risk assessment is usually performed qualitatively and quantitatively depending on the definition a drought. The meteorological drought indices have a limit of not being able to consider the hydrological components such as evapotranspiration, soil moisture and runoff, because it does not consider the water demand in paddies and water supply in reservoirs. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The objectives of this study were to suggest improved agricultural drought risk assessment in order to evaluate of regional drought vulnerability and severity studied by using Reservoir Drought Index (RDI). The RDI is designed to simulate daily water balance between available water from agricultural reservoir and water requirement in paddies and is calculated with a frequency analysis of monthly water deficit based on water demand and water supply condition. The results indicated that RDI can be used to assess regional drought risk in agricultural perspective by comparing with the historical records of drought in 2012. It can be concluded that the RDI obtained good performance to reflect the historical drought events for both spatially and temporally. In addition, RDI is expected to contribute to determine the exact situation on the current drought condition for evaluating regional drought risk and to assist the effective drought-related decision making.

가뭄사상 및 농업수리시설물이 쌀 생산량에 미치는 영향에 대한 상관 분석 (On the Linkage Between Irrigation Facilities and Rice Production Under Drought Events)

  • 우승범;남원호;전민기;윤동현;김태곤;성재훈;김한중
    • 한국농공학회논문집
    • /
    • 제63권5호
    • /
    • pp.95-105
    • /
    • 2021
  • Drought is a disaster that causes prolonged and wide scale damage. Recently, the severity and frequency of drought occurrences, and drought damage have been increased significantly due to climate change. As a result, a quantitative study of drought factors is needed to better understand and prevent future droughts. In the case of agricultural drought, several existing studies examine the economic damage caused by droughts and their causes, but these studies are not well suited to estimating crop-oriented agricultural drought damage and the factors that absolutely affect agricultural drought. This study determines which factors most affect agricultural drought. It examines meteorological factors and those related to agricultural water supplied by irrigation facilities. Rice paddy production per unit area is lower than the average from the last two years where agricultural drought occurred. We compare the relative frequency of agricultural drought impacts with irrigation facilities, effective reservoir storage, the number of water supply facilities, and the meteorological drought index such as Standardized Precipitation Index (SPI). To identify factors that affect agricultural drought, we correlate rice paddy production anomalies with irrigation water supply for the past two years. There was a high positive correlation between rice paddy production and irrigation water usage, and there was a low or moderate negative correlation between rice paddy production anomalies compared to the average of the past two years and SPI. As a result, agricultural water supply by irrigation facilities was judged to be more influential than meteorological factors in rice paddy production. This study is expected to help local governments establish policies related to agricultural drought response.

기상학적, 농업학적, 수문학적 가뭄지수를 이용한 청미천 유역의 가뭄 분석 (Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices)

  • 원광재;정은성
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.509-518
    • /
    • 2016
  • 본 연구는 1985년부터 2015년까지 지속기간에 따른 청미천 유역의 가뭄을 분석하였다. 가뭄의 정량적 평가를 위해 기상학적 가뭄지수와 수문학적 가뭄지수를 사용하였다. 기상학적 가뭄지수로는 강수량을 변수로 하는 SPI(Standarized Precipitation Index)와 강수량과 증발산량을 변수로 하는 SPEI(Standarized Precipitation Evapotranspiration Index)를 사용하였다. SWAT 모형의 모의를 통해 도출된 결과를 바탕으로 농업학적 가뭄지수인 PDSI(Palmer Drought Severity Index)와 수문학적 가뭄지수인 SDI(Streamflow Drought Index)를 적용하였다. 산정 결과, 극한 및 평균 가뭄의 평균에서 2015년과 2014년이 가장 가뭄에 취약함이 확인되었다. 빈도분석에 따른 가뭄의 변동성은 서로 다른 형태를 보였다. 또한 상관분석에서 극한 가뭄 및 평균 가뭄은 PDSI를 제외한 SPI, SPEI, SDI 가뭄지수간에는 높은 상관관계가 확인되었다. 하지만 각 가뭄지수는 서로 다른 극한가뭄의 시기 및 강도를 보였다. 따라서 가뭄분석시 다양한 특성을 지닌 가뭄지수를 활용하는 것이 필요하다.

MODIS VHI를 이용한 방글라데시 Pre-Kharif 시즌 농업가뭄의 평가 (Evaluating the Agricultural Drought for Pre-Kharif Season in Bangladesh using MODIS Vegetation Health Index)

  • 모하마드 캄루자먼;장민원;황세운;장태일
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.55-63
    • /
    • 2018
  • This paper aimed to characterize the spatial and temporal pattern of agricultural drought in Pre-Kharif season using Vegetation Health Index (VHI) and illustrated drought characteristics in Bangladesh during 2001-2015. VHI was calculated from TCI (Temperature Condition Index) and VCI (Vegetation Condition Index) derived from MODIS Terra satellite data, LST (Land Surface Temperature) and EVI (Enhanced Vegetation Index), respectively. The finding showed that all drought-affected areas were experienced by mild, moderate, severe and extreme droughts in several years of Pre-Kharif seasons. Significant drought events were found in the year of 2002 and 2013. On average, Chittagong district covered the largest drought area in all drought stages, and the fraction of drought area was the highest in Sylhet and Rangpur for Pre-Kharif season. Finally, overlaying annual VHI raster maps resulted in that the most vulnerable district to agricultural drought were Sylhet, Rangpur, and Mymensingh in the northern and eastern regions of Bangladesh.

식생가뭄반응지수 (VegDRI)를 활용한 위성영상 기반 가뭄 평가 (Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea))

  • 남원호;;;장민원;홍석영
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.1-9
    • /
    • 2015
  • The development of drought index that provides detailed-spatial-resolution drought information is essential for improving drought planning and preparedness. The objective of this study was to develop the concept of using satellite-based hybrid drought index called the Vegetation Drought Response Index in South Korea (VegDRI-SKorea) that could improve spatial resolution for monitoring local and regional drought. The VegDRI-SKorea was developed using the Classification And Regression Trees (CART) algorithm based on remote sensing data such as Normalized Difference Vegetation Index (NDVI) from MODIS satellite images, climate drought indices such as Self Calibrating Palmer Drought Severity Index (SC-PDSI) and Standardized Precipitation Index (SPI), and the biophysical data such as land cover, eco region, and soil available water capacity. A case study has been done for the 2012 drought to evaluate the VegDRI-SKorea model for South Korea. The VegDRI-SKorea represented the drought areas from the end of May and to the severe drought at the end of June. Results show that the integration of satellite imageries and various associated data allows us to get improved both spatially and temporally drought information using a data mining technique and get better understanding of drought condition. In addition, VegDRI-SKorea is expected to contribute to monitor the current drought condition for evaluating local and regional drought risk assessment and assisting drought-related decision making.