• 제목/요약/키워드: Agricultural drought

검색결과 605건 처리시간 0.027초

위성영상기반 농업가뭄 모니터링을 위한 Evaporative Stress Index (ESI)의 적용성 평가 (Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea)

  • 윤동현;남원호;이희진;홍은미;김태곤;김대의;신안국
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.121-131
    • /
    • 2018
  • Climate change has caused changes in environmental factors that have a direct impact on agriculture such as temperature and precipitation. The meteorological disaster that has the greatest impact on agriculture is drought, and its forecasts are closely related to agricultural production and water supply. In the case of terrestrial data, the accuracy of the spatial map obtained by interpolating the each point data is lowered because it is based on the point observation. Therefore, acquisition of various meteorological data through satellite imagery can complement this terrestrial based drought monitoring. In this study, Evaporative Stress Index (ESI) was used as satellite data for drought determination. The ESI was developed by NASA and USDA, and is calculated through thermal observations of GOES satellites, MODIS, Landsat 5, 7 and 8. We will identify the difference between ESI and other satellite-based drought assessment indices (Vegetation Health Index, VHI, Leaf Area Index, LAI, Enhanced Vegetation Index, EVI), and use it to analyze the drought in South Korea, and examines the applicability of ESI as a new indicator of agricultural drought monitoring.

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.213-222
    • /
    • 2010
  • Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to $40^{\circ}C$ for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular $CO_2$ concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

Evaluating the Spatio-temporal Drought Patterns over Bangladesh using Effective Drought Index (EDI)

  • Kamruzzaman, Md.;Hwang, Syewoon;Cho, Jaepil;Park, Chanwoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.158-158
    • /
    • 2018
  • Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.

  • PDF

MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가 (Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis)

  • 윤동현;남원호;이희진;홍은미;김태곤
    • 한국농공학회논문집
    • /
    • 제62권3호
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

수문기상 정보를 이용한 가뭄 전이 분석: 기상학적 가뭄에서 농업적 가뭄 (Analysis of drought propagation using hydrometeorological data: from meteorological drought to agricultural drought)

  • 유명수;조영현;김태웅;채효석
    • 한국수자원학회논문집
    • /
    • 제51권3호
    • /
    • pp.195-205
    • /
    • 2018
  • 가뭄은 여러 가지 요인에 의해 복합적으로 발생하는 현상으로 자연적 원인과 인위적 원인으로 구분할 수 있다. 우리나라는 기후학적 특성상 여름철에 태평양 고기압의 발달 시기가 빠르거나 평년보다 강하면 장마 기간이 짧아져 자연적인 원인에 의해 가뭄이 발생한다. 가뭄은 발생과정과 피해 영향에 따라 기상학적, 농업적, 수문학적, 사회경제적 가뭄으로 구분할 수 있으며 직 간접적으로 다른 가뭄에 영향을 미친다. 가뭄의 종류가 기상학적 가뭄에서 농업적 가뭄 혹은 기상학적 가뭄에서 수문학적 가뭄으로 변화되는 현상을 가뭄 전이라 한다. 본 연구에서는 국내의 가뭄 전이 발생 여부와 발생 패턴을 검토하기 위해 수문기상 정보를 이용하여 기상학적 가뭄에서 농업적 가뭄으로의 전이 관계를 분석하였다. 가뭄 전이 발생 현황 및 특성 분석을 위해 가뭄 발생의 유형을 5가지로 구분하였으며, 유형에 따라 가뭄 전이가 발생하지 않거나 최대 3개월까지 지체되는 것을 확인하였다. 향후 더 많은 가뭄 지표들과의 분석을 통해 가뭄 전이 관계를 일반화한다면 기상학적 가뭄 발생 시 농업적 가뭄 예측을 위한 인자로 활용할 수 있을 것으로 기대된다.

SWSI에 기반한 금강권역 농업용 저수지의 수문학적 가뭄평가 (Hydrological Drought Assessment of Agricultural Reservoirs based on SWSI in Geum River Basin)

  • 안소라;박종윤;정인균;나상진;김성준
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.35-49
    • /
    • 2009
  • This study proposes a method to evaluate agricultural reservoirs drought by modifying SWSI (Surface Water Supply Index). The method was applied to Geum river basin and the results were represented as spatially distributed information. The SWSI evaluates hydrological drought of watershed unit by selectively applying one or all of the components of snowpack, precipitation, streamflow and reservoir storage. South Korea has 22 % of agricultural area, and rice paddy covers 64 % among them. Usually paddy fields scattered along stream are irrigated by so many small agricultural reservoirs. It is difficult to evaluate agriculture drought by the little information and large number of agricultural reservoirs. In this study, seven agricultural reservoirs over 10 million ton storage capacity were selected in Geum river basin, and the SWSI was evaluated for both upstream and downstream of the reservoirs using 16 years data (1991-2006). Using the results, multiple regression analyses with precipitation and reservoir storage as variables were conducted and the equations were applied to other watersheds. The spatial results by applying regression equations showed that the severe and moderate drought conditions of July and September in 1994, June in 1995, and May in 2001 were well expressed by the watershed unit.

지리정보시스템과 토양수분모형을 이용한 농업가뭄분석 (Agricultural Drought Analysis using Soil Water Balance Model and Geographic Information System)

  • 배승종
    • 한국농공학회지
    • /
    • 제41권6호
    • /
    • pp.33-43
    • /
    • 1999
  • Drought is a serious diaster in agriculutre, especially to upland crops. Hence, the Agricultural Drought Analysis Model (ADAM) that is integratable with GIS was applied to analyae agriculture drought in upland. ADAM is composed of two sub-models , one is a Soil Water Balance Model (SWBM) and the other is a Drougth Analysis Model (DAM) that is based on the Runs theory. The ADAM needs weather data, rainfall data and soil physical characteristics data as input and calculates daily soil moisture contents. GIS was integrated to the ADAM for the calculation of regional soil moisture using digitized landuse map, detaile dsoil map, thiessen network and district boundary . For the agriculutral drought analysis, the ADAM adapt the Runs theory for analyzing drought duration, severity and magnitude . Log-Pearson Type-III probability distribution function and Kolmogorov-Smirnov test were used to test the fitness of good of the model. The integration of ADAM with GIS was successfully implemented and would be operated effectively for the regional drought analysis.

  • PDF

수문기상가뭄지수 (HCDI) 개발 및 가뭄 예측 효율성 평가 (Development of Hydroclimate Drought Index (HCDI) and Evaluation of Drought Prediction in South Korea)

  • 류재현;김정진;이경도
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.31-44
    • /
    • 2019
  • The main objective of this research is to develop a hydroclimate drought index (HCDI) using the gridded climate data inputs in a Variable Infiltration Capacity (VIC) modeling platform. Typical drought indices, including, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Self-calibrated Palmer Drought Severity Index (SC-PDSI) in South Korea are also used and compared. Inverse Distance Weighting (IDW) method is applied to create the gridded climate data from 56 ground weather stations using topographic information between weather stations and the respective grid cell ($12km{\times}12km$). R statistical software packages are used to visualize HCDI in Google Earth. Skill score (SS) are computed to evaluate the drought predictability based on water information derived from the observed reservoir storage and the ground weather stations. The study indicates that the proposed HCDI with the gridded climate data input is promising in the sense that it can help us to predict potential drought extents and to mitigate its impacts in a changing climate. The longer term drought prediction (e.g., 9 and 12 month) capability, in particular, shows higher SS so that it can be used for climate-driven future droughts.

현장조사 관개 기준에 따른 농업용 저수지 운영 분석 (Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline)

  • 김마가;최진용;방재홍;윤푸른;김귀훈
    • 한국농공학회논문집
    • /
    • 제65권5호
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.

Overexpresssion of the OsbZIP66 transcription factor enhances drought tolerance of rice plants

  • Lee, Ho Suk;Yoon, Suin;Yu, In Jeong;Kim, Youn Shic;Choi, Yang Do;Kim, Ju-Kon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.160-160
    • /
    • 2017
  • Drought stress is a major constraint of crop development and productivity. Plants have evolutionally developed several mechanisms at the molecular, cellular, and physiological levels to overcome drought stress. The basic Leucine zipper (bZIP) transcription factor (TF) family members are starting to be concerned about their roles in drought stress responses. In this study, we functionally characterized OsbZIP66, a rice group-E bZIP TF, to be associated with rice drought tolerance mechanisms. Expression of OsbZIP66 was significantly induced upon treatments of rice plants with drought, high salinity, and ABA. These observations and the fact that the OsbZIP66 promoter contains ten ABA-responsive elements suggest that OsbZIP66 is up-regulated by drought stress in an ABA-dependent manner. Overexpression of both OsbZIP66 in a whole plant body and specifically in roots enhanced drought tolerance of rice plants, indicating that the rice drought tolerance positively correlates with the expression levels of OsbZIP66. Thus, our results demonstrated that OsbZIP66 has a potential for use in biotechnological development of high-yielding rice plants under drought conditions.

  • PDF