• Title/Summary/Keyword: Agricultural disaster

Search Result 272, Processing Time 0.022 seconds

Can Agricultural Aid and Remittances Alleviate Macroeconomic Volatility in Response to Climate Change Shocks? (아프리카 국가들의 경제성장률 변동성에 기후변화, 송금 및 농업 원조가 미치는 영향 분석)

  • You, Soobin;Kim, Taeyoon
    • Environmental and Resource Economics Review
    • /
    • v.25 no.4
    • /
    • pp.471-494
    • /
    • 2016
  • This study investigates the effect of remittance and agricultural aid inflows on GDP growth rate volatility in response to climate change shocks in twenty-eight African countries by using system generalized method of moments from 1996 to 2013 with three years grouped data. The climate change shocks are indicated by four variables; natural disasters, rainfall variability, fluctuation in temperature and the weighted anomaly standardized precipitation (WASP) index. Consequently, natural disasters and temperature variability have a significant effect on GDP volatility, while rainfall variability and WASP index have no adverse consequence on stabilization of the economy. On the other hand, in general, remittances and agricultural aid are helpful to stabilize the economy and especially remittances inflows can play a crucial role as insurance when natural disasters occur.

An evaluation of a crushed stone filter and gabion retaining wall for reducing internal erosion of agricultural reservoirs

  • Lee, Young-Hak;Lee, Dal-Won;Ryu, Jung-Hyun;Kim, Cheol-Han;Heo, Joon;Shim, Jae-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.485-496
    • /
    • 2020
  • Recent changes in the disaster environment have greatly increased the possibility of internal erosion in deteriorated reservoirs; thus, countermeasure methods are required to enhance the drainage performance of embankments. Sand filters have been mainly used to prevent internal erosion; however, due to the sand depletion and environmental problems, new alternative materials are required to replace the sand in the filter zone. In this study, crushed stone was used instead of sand as a material that could satisfy permeability, material supply, demanding conditions, and economic efficiency. Although crushed stone has excellent drainage performance, it has a clogging phenomenon due to its high permeability. Accordingly, the materials need to be separated with a geotextile wrapping method. Additionally, the 3D numerical analysis and a large model experiment were conducted to evaluate the seepage characteristics and in-site application of the crushed stone filter. As a result, the crushed stone filter showed an excellent dispersion effect by reducing the pore water pressure by about 9.5 times that of the sand filter. In addition, it was shown that the safety factor for piping increased significantly by reducing internal erosion. When comparing the economics and supply and demand conditions of the material, crushed stone was evaluated as an effective method to reduce the internal erosion of embankments at deteriorated reservoirs.

Implementation of Agrometeorological Early Warning System for Weather Risk Management in South Korea

  • Shim, Kyo Moon;Kim, Yong Seok;Jung, Myung-Pyo;Choi, In Tae;Kim, Hojung;Kang, Kee Kyung
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 2017
  • The purpose of the farmstead-specific early warning service system for weather risk management is to develop custom-made risk management recommendations for individual farms threatened by climate change and its variability. This system quantifies weather conditions into a "weather risk index" that is customized to crop and its growth stage. When the risk reaches the stage where it can cause any damage to the crops, the system is activated and the corresponding warning messages are delivered to the farmer's mobile phone. The messages are sent with proper recommendations that farmers can utilize to protect their crops against potential damage. Currently, the technology necessary to make the warning system more practical has been developed, including technology for forecasting real-time weather conditions, scaling down of weather data to the individual farm level and risk assessments of specific crops. Furthermore, the scientific know-how has already been integrated into a web-based warning system (http://new.agmet.kr). The system is provided to volunteer farmers with direct, one-on-one weather data and disaster warnings along with relevant recommendations. In 2016, an operational system was established in a rural catchment ($1,500km^2$) in the Seomjin river basin.

Development of Methodology for Measuring Water Level in Agricultural Water Reservoir through Deep Learning anlaysis of CCTV Images (딥러닝 기법을 이용한 농업용저수지 CCTV 영상 기반의 수위계측 방법 개발)

  • Joo, Donghyuk;Lee, Sang-Hyun;Choi, Gyu-Hoon;Yoo, Seung-Hwan;Na, Ra;Kim, Hayoung;Oh, Chang-Jo;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • This study aimed to evaluate the performance of water level classification from CCTV images in agricultural facilities such as reservoirs. Recently, the CCTV system, widely used for facility monitor or disaster detection, can automatically detect and identify people and objects from the images by developing new technologies such as a deep learning system. Accordingly, we applied the ResNet-50 deep learning system based on Convolutional Neural Network and analyzed the water level of the agricultural reservoir from CCTV images obtained from TOMS (Total Operation Management System) of the Korea Rural Community Corporation. As a result, the accuracy of water level detection was improved by excluding night and rainfall CCTV images and applying measures. For example, the error rate significantly decreased from 24.39 % to 1.43 % in the Bakseok reservoir. We believe that the utilization of CCTVs should be further improved when calculating the amount of water supply and establishing a supply plan according to the integrated water management policy.

Development of Optimal Modeling System for Analyzing Mountain Micrometeorology (산림 미기상 해석을 위한 최적모델 개발)

  • Lee, SukJun;choi, YongHan;Jung, JeaHee;Won, MyoungSoo;Lim, Gyu-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • The extreme weather conditions become frequent and severe with global warming. To prevent and cope forest disaster like a forest fire, we need an accurate micrometeorological prediction system for mountainous regions. This study addressed the forest fires occurred at Bonghwa and Gangneung in March, 2013. We constructed and optimized the prediction system that were required to interpret and simulate the forest micrometeorology. At first, we examined WRF physical sensitivity. Subsequently, KMA AWS observation data were assimilated using three-dimensional variation data assimilation method. The effectiveness of the assimilation was examined by using AWS observations enhanced with the Forest Research Institute observations. Finally, The 100 meters spatial resolution wind data were obtained by using the MUKLIMO for the given wind vector from WRF.

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.

Evaluation of Wind load Safety for Single G-type Greenhouse Using Korean Design Standard (건축구조기준을 활용한 농가지도형 G형 비닐하우스의 풍하중 안전성 평가)

  • Lee, Woogeun;Shin, Kyungjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Plastic greenhouses are simple structures consisting of lightweight materials such as steel pipes and polyvinyl chloride. However, serious damage occurs due to heavy winds and typhoon every year. To prevent a collapse of structural members, the Ministry of Agriculture and Rural Development has distributed plans and specifications for disaster-resistant standards. Despite these efforts, more than 50% of greenhouses still do not satisfy the disaster-resistant standards. Among the greenhouses that do not meet these standards, 85% are single-span greenhouses proposed 20 years ago. Consequently, there is a need to evaluate the safety of wind loads for the single-span greenhouse. Unfortunately, there are no design specifications for the greenhouses under wind loads. Therefore, a Korean design standard (KDS) has been utilized. KDS is defined with reference to wind speeds occurring once every 500 years, raising concerns about potential overdesign when considering the durability of plastic greenhouses. To address this, the modified wind load, considering the durability of the plastic greenhouse, was calculated, and a safety evaluation was conducted for sigle G-type plastic greenhouse. It was observed that the moment acting on the windward surface was substantial, and there was a risk of the foundation being pulled out if the basic wind speed exceeded 32 m/s. In terms of the combination strength ratio, it was less than 1.0 only on the leeward side when the basic wind speed was 24 m/s and 26 m/s. However, in all other cases, it exceeded 1.0, indicating an unsafe condition and highlighting the necessity for reinforcement.

Evaluation of Mechanical Properties and Durability of Fabric Concrete Binder for Emergency Repair (기상재해 대응 긴급보수용 패브릭 콘크리트 혼합물의 역학적 특성 및 내구성능 평가)

  • Jeon, Sang-Min;Jo, Sung-Mun;Oh, Ri-On;Kim, Hwang-Hee;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.23-31
    • /
    • 2020
  • Recently, meteorological disasters have been increasing by climate change, excessive rainfall, and landslide. The purpose is to develop new fabric concrete that can prevent and recover from damages because some of areas are vulnerable to meteorological disaster. Specifically, this technology can minimize time and space constraint when repairing the concrete structure and installing a formwork. The structure of fabric concrete is a mixture of fabric concrete and a high-speed hardened cement, Silica sand, wollastonite mineral fiber, fabric material and waterproof PVC fabric. In this study, the ratio of mechanical properties and durability of the fabric concrete mixture was evaluated by deriving the binder: silica sand mix ratio of the fabric concrete mixture and substituting part of the cement amount with wollastonite mineral fiber. Best binder in performance evaluation: Silica sand mix ratio is 6: 4 and the target mechanical performance and durability are the best when over 15% wollastonite binder is replaced by silicate mineral fiber.

Vulnerability assessment of upland public groundwater wells against climate change

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.577-596
    • /
    • 2020
  • Drought is a natural disaster that directly affects agriculture, which has a great impact on the global agricultural production system and yield. The lack of water storage in most parts of the country due to the lack of precipitation has caused a great increase in social interest in drought due to the dryness of rice fields and crops. As the drought period increases and the drought intensity becomes stronger, it is believed that drought damage to crops will continue; thus, it is necessary to understand the vulnerability to irrigation performance and the ability of irrigation facilities. Therefore, this study conducted a vulnerability assessment of irrigation facilities (public Groundwater well) in cities across the country. The survey was conducted using statistical data from 2007 to 2016, and the vulnerability score was calculated according to the vulnerability evaluation procedure for drought in the irrigation facilities (public groundwater wells). Among 157 regions, 136 areas were very vulnerable; 14 areas were vulnerable; 3 areas were normal; 4 areas were good, and 0 areas were excellent. The vulnerability assessment can be used as basic data for the development or maintenance of field irrigation facilities in the future by understanding the vulnerability of irrigation facilities.

Behaviour Analysis of Irrigation Reservoir Using Open Water Management Program (개방형 물관리 프로그램을 이용한 관개용 저수지의 거동 분석)

  • Kim, Sun-Joo;Kim, Phil-Shik;Lim, Chang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.3-13
    • /
    • 2004
  • For optimal irrigation reservoir operation during flood and normal period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. We developed Open Water Management Program (OWMP) with an open architecture to deal with newly arising upgrade problems for optimal management of irrigation reservoir. And we evaluated the applicability of OWMP to estimate daily runoff from an agricultural watershed including irrigation reservoirs, and analyzed behaviour of irrigation reservoirs as irrigation water requirements considering frequency analysis of reservoir storage and frequency analysis water requirements for effective management of reservoir. When we executed OWMP with data produced from an experimental field, IHP basins, the mean relative errors of application of daily runoff and irrigation water requirement were less than 5%. We also applied OWMP to a Seongju irrigation reservoir to simulate daily runoff, storage and water requirement from 1998 to 2002, and the mean model efficiency between measured and simulated value was 0.76. Our results based on the magnitude of relative errors and model efficiency of the model simulation indicate that the OWMP can be a tool nicely adapted to the effective water management of irrigation reservoir for beneficial water use and flood disaster management.