• Title/Summary/Keyword: Agricultural area with livestock facilities

Search Result 12, Processing Time 0.021 seconds

A Study on the Improvement of Dairy Rousing Systems in Kore (한국의 낙농시설 개선에 관한 연구)

  • Kim, Moon-Ki;Koh, Chae-Koon;Kim, H. U.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.31-43
    • /
    • 1982
  • Engineering phase of dairy housing systems has close connection with the milk produc- tivity of dairy cattle, the quality of milk, extension of dairy production systems, labor- saving in management of dairy cattle and the like. Moreover, the rate of investment of dairy housing facilities is of relatively high level, However, there has been almost no research effort for the improvement of engineering aspects of dairy housing systems in Korea. The purpose of this study is to find out general engineering problems and to recomm- end the improvement in dairy housing systems in Korea. Field survey by means of questionaire, direct measurements, taking pictures and sketching was conducted to get necessary information for the study. Kyung-ki Do region was firstly chosen for sampling area since it has included more than half of the number of dairy farms of the whole country. The results obtained are summarized as follows: 1. In overall dairy farm layout, the dwellings of workers were ignored in the light of sanitary environment 2. The layout of stalls in a dairy barn belongs mostly to the type of double-row face-out, which is compatible with the emphasis of manure disposal activities. 3. While the width and length of stalls were sufficiently close to the standard dimension, the width of mangers was much less than the standard dimension. 4. The width and depth of manure gutters and the width of working alleys were much. less than the standard dimension. 5. The mooring equipment was mostly in the classes of chain or rope. The watering equipment was not facilitated independantly except the one cese of using watercup. 6. The bucket milkers with one or two bucket milkers with the capacity of two cattles. each were used as milking equipment in most dairy farms. 7. There were only few milk rooms independently spaced from other space, in which the arrangement of milking equipment was much less than the standard condition. 8. The lounging ground area was averaged to be sufficient for the activity of dairy herd. 9. Silos for silage used during winter consisted of mostly bunker silos, trench silos and underground vertical silos. Ordinary vertical silos were considered for the farmers to be inconvenient for the labor saving. 10. From the view point of heat conservation and moisture removal within the dairy barns, windows were not flexible for the easy ventilation and ceiling part was not adequate for temperatur maintenance. 11. Waste treatment and disposal systems were not provided with most dairy farms, therefore the livestock waste pollution problems would be serious in the near future.

  • PDF

A Study on the Growth Process and Cases Type of Smart Farm - Focused on the Case of Korea and Japan - (스마트팜의 발전과정과 유형별 사례 조사 - 한국과 일본의 사례를 중심으로 -)

  • Nam, Yun-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.37-46
    • /
    • 2024
  • The city is developing into a smart city. Smart villages and smart farms are developing in rural areas. Architectural technology needs synergy with smart cities, smart villages, and smart factories (intelligent factories) to help architectural experts understand smart farms and build facilities and equipment. Smart farms require design and construction technology with architectural structure and function. The purpose of this study was to investigate the current status and cases of smart farms in Korea and to investigate cases abroad. The conclusion is as follows. ① Smart farms are developing rapidly. The Korean government is expanding smart farms by utilizing ICT technology and infrastructure. ② 'Smart Farm Innovation Valley', which has been promoted since 2018, is a cutting-edge convergence cluster industrial complex that integrates production, education, and research functions such as start-ups and technological innovation. ③ In domestic cases, smart farms are operated in subway stations, buildings, supermarkets, and restaurants. ④ In the Japanese case, a dome-type smart farm was being operated. It utilized factory wastewater, waste heat, renewable energy, and used new materials. Otemachi Ranch raised livestock and provided a lounge on the 13th floor of the building. ⑤ In the cases of Korea and Japan, the smart farm technology is very similar. As stated earlier, since the food culture and agricultural technology of both countries are similar, we hope to promote the development of smart farms that can reduce concerns about future food by communicating and sharing mutual technologies.