• Title/Summary/Keyword: Agricultural Sector Model

Search Result 106, Processing Time 0.021 seconds

Assessment of Drought Severity on Cropland in Korea Peninsula using Normalized Precipitation Evapotranspiration Index (NPEI) (정규화강수증발산지수(NPEI)를 활용한 한반도 농경지의 가뭄심도 평가)

  • Lim, Chul-Hee;Kim, Damin;Shin, Yuseung;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.223-231
    • /
    • 2015
  • Although a considerable part of climate change can be explained by temperature change, hydrological change such as precipitation, evapotranspiration, and runoff impact more on society. For the ascertain a hydrological change in agriculture sector, this study estimate evapotranspiration of cropland in the Korean peninsula, and then to assess the drought severity in the past 30 years through the estimated potential evapotranspiration and observed precipitation. The potential evapotranspiration is estimated by EPIC model and Penman-Monteith method and the drought severity in cropland of the Korean peninsula is assessed using Normalized Precipitation Evapotranspiration Index (NPEI) based on the difference in precipitation and potential evapotranspiration. In North Korea, the estimated evapotranspiration tends to increase even though a significant change is not found due to the change of climate. Although a time series change in drought severity in the past 30 years is not pronounced, a deviation by year and difference between South and North Korea is certain. One reason of this is difference in precipitation and evapotranspiration change according to the latitude. The result including expansion of facilities for water management in North Korea can be used for agricultural decision making, as well as base data of climate change adaptation.

A Study on Economic Effects of NAMA Negotiations in the WTO on Automotive Industry of the World (WTO 비농산물협상이 전세계 자동차산업에 미치는 영향에 관한 연구)

  • Ko, Jong-Hwan
    • International Area Studies Review
    • /
    • v.15 no.3
    • /
    • pp.95-126
    • /
    • 2011
  • The objective of this study is to quantify the potential economic effects of Non-Agricultural Market Access (NAMA) negotiations of the WTO on automotive industry of the world using a multi-region, multi-sector Computable General Equilibrium (CGE) model with 21 countries/regions and 22 sectors. According to the December 2008 NAMA modalities text, issued by the chair of the negotiation on NAMA, three different scenarios of tariff liberalization of NAMA are conducted on the basis of the Swiss formula with a coefficient of 8 for developed members and 20 for developing (scenario 1), with a coefficient of 8 for developed members and 22 for developing (scenario 2) and with a coefficient of 8 for developed members and 25 for developing (scenario 3). Simulation results show potential economic effects at the macroeconomic and microeconomic level of 21 countries concerned. In particular, Korea is to be one of the winners of tariff liberalization of NAMA in the WTO and Korean automotive industry is to benefit from it to a large extent in terms of its output, domestic sales, exports and trade balance, which implies that Korea needs to actively engage in NAMA negotiations of the WTO.

Impact of IODM and ENSO on the East Asian Monsoon: Simulations through NCAR Community Atmospheric Model (동아시아 몬순 지역에서 IODM과 ENSO의 영향 : NCAR Community Atmospheric Model을 이용한 모의 실험)

  • Oh J.-H.;Chaudhari H. S.;Kripalani R. H.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.240-249
    • /
    • 2005
  • The normal Indian Ocean is characterized by warmer waters over the eastern region and cooler waters over the western region. Changes in sea surface temperature (SST) over the western and eastern Indian Ocean give birth to a phenomenon now referred to as the Indian Ocean Dipole Mode (IODM). The positive phase of this mode is characterized by positive SST anomalies over the western Indian Ocean and negative anomalies over the southeastern Indian Ocean, while the negative phase is characterized by a reversed SST anomaly pattern. On the other hand, the normal Pacific Ocean has warm (cool) waters over the western (eastern) parts. Positive (negative) SST anomalies over the central/eastern (western) Pacific Ocean characterize the E1 Nino phenomenon. The reverse situation leads to the La Nina phenomenon. The coupled ocean-atmosphere phenomenon over the Pacific is referred to as the E1 Nino Southern Oscillation (ENSO) phenomenon. In this study the impact of IODM and ENSO on the East Asian monsoon variability has been studied using observational data and using the Community Atmospheric Model (CAM) of the National Center for Atmospheric Research (NCAR). Five sets of model experiments were performed with anomalous SST patterns associated with IODM/ENSO superimposed on the climatological SSTs. The empirical and dynamic approaches reveal that it takes about 3-4 seasons fur the peak IODM mode to influence the summer monsoon activity over East Asia. On the other hand, the impact of ENSO on the East Asian monsoon could occur simultaneously. Further, the negative (positive) phase of IODM and E1 Nino (La Nina) over the Pacific enhances (suppresses) monsoon activity over the Korea-Japan Sector. Alternatively, IODM appears to have no significant impact on monsoon variability over China. However, El Nino (La Nina) suppresses (enhances) monsoon activity over China. While the IODM appears to influence the North Pacific subtropical high, ENSO appears to influence the Aleutian low over the northwest Pacific. Thus, the moisture supply towards East Asia from the Pacific is determined by the strengthening/weakening of the subtropical high and the Aleutian low.

A Case Study: Improvement of Wind Risk Prediction by Reclassifying the Detection Results (풍해 예측 결과 재분류를 통한 위험 감지확률의 개선 연구)

  • Kim, Soo-ock;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Early warning systems for weather risk management in the agricultural sector have been developed to predict potential wind damage to crops. These systems take into account the daily maximum wind speed to determine the critical wind speed that causes fruit drops and provide the weather risk information to farmers. In an effort to increase the accuracy of wind risk predictions, an artificial neural network for binary classification was implemented. In the present study, the daily wind speed and other weather data, which were measured at weather stations at sites of interest in Jeollabuk-do and Jeollanam-do as well as Gyeongsangbuk- do and part of Gyeongsangnam- do provinces in 2019, were used for training the neural network. These weather stations include 210 synoptic and automated weather stations operated by the Korean Meteorological Administration (KMA). The wind speed data collected at the same locations between January 1 and December 12, 2020 were used to validate the neural network model. The data collected from December 13, 2020 to February 18, 2021 were used to evaluate the wind risk prediction performance before and after the use of the artificial neural network. The critical wind speed of damage risk was determined to be 11 m/s, which is the wind speed reported to cause fruit drops and damages. Furthermore, the maximum wind speeds were expressed using Weibull distribution probability density function for warning of wind damage. It was found that the accuracy of wind damage risk prediction was improved from 65.36% to 93.62% after re-classification using the artificial neural network. Nevertheless, the error rate also increased from 13.46% to 37.64%, as well. It is likely that the machine learning approach used in the present study would benefit case studies where no prediction by risk warning systems becomes a relatively serious issue.

<Field Action Report> Local Governance for COVID-19 Response of Daegu Metropolitan City (<사례보고> 코로나바이러스감염증-19 유행과 로컬 거버넌스 - 2020년 대구광역시 유행에 대한 대응을 중심으로 -)

  • Kyeong-Soo Lee;Jung Jeung Lee;Keon-Yeop Kim;Jong-Yeon Kim;Tae-Yoon Hwang;Nam-Soo Hong;Jun Hyun Hwang;Jaeyoung Ha
    • Journal of agricultural medicine and community health
    • /
    • v.49 no.1
    • /
    • pp.13-36
    • /
    • 2024
  • Objectives: The purpose of this field case report is 1) to analyze the community's strategy and performance in responding to infectious diseases through the case of COVID-19 infectious disease crisis response of Daegu Metropolitan City, and 2) to interpret this case using governance theory and infectious disease response governance framework. and 3) to propose a strategic model to prepare for future infectious disease outbreaks of the community. Methods: Cases of Daegu Metropolitan City's infectious disease crisis response were analyzed through researchers' participatory observations. And review of OVID-19 White Paper of Daegu Metropolitan City, Daegu Medical Association's COVID-19 White Paper, and literature review of domestic and international governance, and administrative documents. Results: Through the researcher's participatory observation and literature review, 1) establishment of leadership and response system to respond to the infectious disease crisis in Daegu Metropolitan City, 2) citizen's participation and communication strategy through the pan-citizen response committee, 3) cooperation between Daegu Metropolitan City and governance of public-private medical facilities, 4) decision-making and crisis response through participation and communication between the Daegu Metropolitan City Medical Association, Medi-City Daegu Council, and medical experts of private sector, 5) symptom monitoring and patient triage strategies and treatment response for confirmed infectious disease patients by member of Daegu Medical Association, 6) strategies and implications for establishing and utilizing a local infectious disease crisis response information system were derived. Conclusions: The results of the study empirically demonstrate that collaborative governance of the community through the participation of citizens, private sector experts, and community medical facilities is a key element for effective response to infectious disease crises.

Evaluation of estuary reservoir management based on robust decision making considering water use-flood control-water quality under Climate Change (이수-치수-수질을 고려한 기후변화 대응 로버스트 기반 담수호 관리 평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Kwak, Jihye;Kim, Jihye;Kang, Moonseong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.419-429
    • /
    • 2023
  • The objective of this study was to determine the management water level of an estuary reservoir considering three aspects: the water use, flood control and water quality, and to use a robust decision-making to consider uncertainty due to climate change. The watershed-reservoir linkage model was used to simulate changes in inflow due to climate change, and changes in reservoir water level and water quality. Five management level alternatives ranging from -1.7 El.m to 0.2 El.m were evaluated under the SSP1, 2, 3, and 5 scenariosof the ACCESS-CM2 Global Climate Model. Performance indicators based on period-reliability were calculated for robust decision-making considering the three aspects, and regret was used as a decision indicator to identify the alternatives with the minimum maximum regret. Flood control failure increased as the management level increased, while the probability of water use failure increased as the management level decreased. The highest number of failures occurred under the SSP5 scenario. In the water quality sector, the change in water quality was relatively small with an increase in the management level due to the increase in reservoir volume. Conversely, a decrease in the management level resulted in a more significant change in water quality. In the study area, the estuary reservoir was found to be problematic when the change in water quality was small, resulting in more failures.