• 제목/요약/키워드: Agricultural Non-point Sources Pollution

검색결과 48건 처리시간 0.023초

새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구 (A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management)

  • 장남정;김보국;임승현;김태균
    • 대한환경공학회지
    • /
    • 제34권1호
    • /
    • pp.23-31
    • /
    • 2012
  • 새만금 유역은 BOD와 TP의 비점오염배출 비중이 각각 68.4와 61.4% (2009년 기준)로 점오염원에 비해 높게 나타나므로 새만금 수질관리를 위해서는 비점오염원에 대한 대책수립이 시급하다. 본 연구에서는 새만금 유역 최적관리기법 대상지 선정을 위해 비점오염원의 영향이 큰 농업지역을 중심으로, 그리고 부영양화에 주요인자인 총인(TP)을 기준으로 농업비점오염대책 우선지구를 선정하고자 하였다. 우선지구 선정방안은 의사결정에 의한 오염영향 지수를 이용한 정성분석 방법으로 수계에 비점오염원(TP기준)이 작용하는 단계를 크게 발생, 배출, 유출 관련지표로 구분하여 비점오염원 영향지수(NPSI; Non-point Source Index)를 산정하였으며, 전문가 AHP (Analytic Hierarchy Process)분석을 통해 지표의 가중치를 결정하였다. NPSI 산정에는 행정구역 745개의 동리단위 기준으로 비점발생특성(해당 지역의 액비살포 면적, 축사 면적, 논면적, 밭면적, 인산질 비료사용량), 비점배출특성(수질오염 총량관리제의 축산계 비점오염원 배출부하량, 토지계 배출부하량), 비점유출특성(토양유실량, 불투수율, 유출곡선지수, 유달거리, 유효강우비)의 총 12개의 지표가 적용되었다. GIS (Geographical Information System) 분석을 이용한 NPSI 산정결과 새만금 유역 농업비점관리지역 우선지구 후보지로 만경강 5지점과 동진강 5지점을 선정하였다. 우선지구 후보지의 선정원인은 주로 축산에서 기인한 것으로 나타났으며, 이는 AHP 분석결과 축산관련 지표의 가중치가 높았기 때문으로 사료된다.

토지피복지도를 활용한 농업비점오염원 오염부하량 산정에 관한 연구 (Method for Calculating the Pollution Load Amount of Agricultural Non-Point Sources Using Land Cover Map)

  • 유지은;김윤지;성현찬;이경일;최지용;전성우
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1249-1260
    • /
    • 2020
  • Non-point source pollutants have characteristics the render them difficult to manage owing to the uncertainty of flow paths. As agricultural non-point sources account for more than 57% of non-point source pollutants, the necessity for management is increasing. This study examines the possibility of utilizing land cover maps to suggest a more appropriate method of setting management priority for agricultural non-point sources in the Daecheong Lake area and draws implications by comparing the results derived using the cadastral map, as mentioned in the TMDL Basic Policy. To define the prioritized areas for management, the pollution load was calculated for each subbasin using the formula from the TMDL technical guidelines. As a result, the difference in the average pollution load between the land cover map and cadastral map ranged from 11.6% to 21% among the subbasins. In almost all subbasins, there were differences in the ranking of management priorities depending on the land information that was used. In addition, it was found that it was reasonable to use the level 3 land cover map to calculate the load generated by the land system for examining the implementation goals and methods of each data and comparing them with satellite images.

농촌 비점오염의 주민주도 관리체계 마련을 위한 주민 의식 변화 분석 - 농촌현장포럼 프로세스를 중심으로 - (Analysis of Changes in Residents' Perception to Establish Resident-driven Management System for Rural Nonpoint Pollution Sources - Rural field forum process -)

  • 나경수;김종건;임경재;김기성
    • 농촌계획
    • /
    • 제25권4호
    • /
    • pp.47-56
    • /
    • 2019
  • More than half of the nonpoint sources of polluting water occur in cultivating farmlands in rural areas. Agricultural nonpoint sources are discharged from large areas of farmlands, making it difficult to collect or treat pollutants. Farmland source management is known to be the most effective, and preventive management by improving farming methods is the key to reduce nonpoint pollution. At present, more than 30% of the pollutants flowing into the rivers and lakes are nonpoint pollutants caused by agricultural activities. As a countermeasure, it is more preferable to develop and apply optimal farming management techniques for agricultural nonpoint pollution management basically than to apply existing water quality management techniques. Because of the characteristics of nonpoint source pollution, it is necessary to manage farmlands in rural areas, so the willingness and competence of the residents is most important. The purpose of this study is to analyze and understand the process of changing the cognition of residents through capacity education and survey for nonpoint pollution management in rural areas. This study conducted intensive resident competency education and examined the process of changing resident awareness through three surveys. As a result of this study, it was found that continuous education and activities for rural non-point pollution management are necessary for raising awareness of residents and managing non-point pollution effectively, showing possibility of change residents' perception.

자연기반해법 적용에 따른 강원도 양구군 해안면의 비점오염 저감 효과 추정 (Estimation of non-point pollution reduction effect of Haean Catchment by application of Nature-based Solutions)

  • 이지우;박찬
    • 한국환경복원기술학회지
    • /
    • 제25권3호
    • /
    • pp.47-62
    • /
    • 2022
  • The Ministry of Environment has been working to reduce the impact on biodiversity, ecosystems, and social costs caused by soil runoff from highland Agricultural fields by setting up non-point pollution source management districts. To reduce soil loss, runoff path reduction technology has been applied, but it has been less cost effective. In addition, non-point pollution sources cause environmental conflicts in downstream areas, and recently highland Agricultural fields are becoming vulnerable to climate change. The Ministry of Environment is promoting the optimal management plan in earnest to convert arable land into forests and grasslands, but since non-point pollution is not a simple environmental problem, it is necessary to approach it from the aspect of NbS(Nature-Based Solution). In this study, a scenario for applying the nature-based solution was established for three subwatersheds west of Haean-myeon, Yanggu-gun, Gangwon-do. The soil loss distribution was spatialized through GeoWEPP and the amount of soil loss was compared for the non-point pollution reduction effect of mixed forests and grasslands. When cultivated land with a slope of 20% or more and ginseng fields were restored to perennial grasslands and mixed forests, non-point pollution reduction effects of about 32% and 29.000 tons compared to the current land use were shown. Also, it was confirmed that mixed forest rather than perennial grassland is an effective nature-based solution to reduce non-point pollution.

계절예측 정보 기반 APEX-Paddy 모형 적용성 평가 (Evaluation of Applicability of APEX-Paddy Model based on Seasonal Forecast)

  • 조재필;최순군;황세운;박지훈
    • 농촌계획
    • /
    • 제24권4호
    • /
    • pp.99-119
    • /
    • 2018
  • Unit load factor, which is used for the quantification of non-point pollution in watersheds, has the limitation that it does not reflect spatial characteristics of soil, topography and temporal change due to the interannual or seasonal variability of precipitation. Therefore, we developed the method to estimate a watershed-scale non-point pollutant load using seasonal forecast data that forecast changes of precipitation up to 6 months from present time for watershed-scale water quality management. To establish a preemptive countermeasure against non-point pollution sources, it is possible to consider the unstructured management plan which is possible over several months timescale. Notably, it is possible to apply various management methods such as control of sowing and irrigation timing, control of irrigation through water management, and control of fertilizer through fertilization management. In this study, APEX-Paddy model, which can consider the farming method in field scale, was applied to evaluate the applicability of seasonal forecast data. It was confirmed that the rainfall amount during the growing season is an essential factor in the non-point pollution pollutant load. The APEX-Paddy model for quantifying non-point pollution according to various farming methods in paddy fields simulated similarly the annual variation tendency of TN and TP pollutant loads in rice paddies but showed a tendency to underestimate load quantitatively.

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • 제5권3호
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정 (Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT)

  • 장재호;윤춘경;정광욱;손영권
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

유역의 토지이용 특성을 고려한 비점오염원 관리방안 적용에 따른 저감 효율 분석 (Analysis of the Efficiency of Non-point Source Pollution Managements Considering the Land Use Characteristics of Watersheds)

  • 최유진;이서로;금동혁;한정호;박운지;김종건;임경재
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.405-422
    • /
    • 2020
  • Land use change by urbanization has significantly affected the hydrological process including the runoff characteristics. Due to this situation, it has been becoming more complicated to manage non-point source pollutions caused by rainfall. In order to effectively control non-point sources, it is necessary to identify the reduction efficiency of the various management method based on land use characteristics. Thus, the purpose of this study is to analyze the reduction efficiency of non-point source pollution management practices targeting three different watersheds with the different land use characteristics using the Soil and Water Assessment Tool (SWAT). To do this, the vulnerable subwatersheds to non-point source pollution occurrence within each watershed were selected based on the streamflow and water quality simulation results. Then, considering the land use, low impact development (LID) or best management practices (BMPs) were applied to the selected subwatersheds and the efficiency of each management was analyzed. As a result of analysis of the non-point source pollution reduction efficiency, when LID was applied to urban areas, the average reduction efficiencies of SS, NO3-N, and TP were 5.92%, 4.62%, and 10.35%, respectively. When BMPs were applied to rural areas, the average reduction efficiencies of SS, TN and TP were 35.45%, 4.37%, and 10.16%, respectively. The results of this study can be used as a reference for determining appropriate management methods for non-point source pollution in urban, rural, and complex watersheds.

Loads of Nitrogen and Phosphorus from the Agricultural Watershed in Central Korea

  • Cho, Jae-Young;Han, Kang-Wan;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.254-257
    • /
    • 2000
  • Water quality monitoring network was established at the agricultural watershed located at the Namdae-chon watershed of Seolchon-myon, Muju-gun, Chollabuk-do, Korea which is 22,560 ha in size. Based on total amount of stream flow loads of nitrogen and phosphorus from the agricultural watershed were estimated. About 4.48 (1,011 ha), 7.02 (1,585 ha), and 86.82% (19,609 ha) of the site were used for paddy fields, upland fields, and forests, respectively. During the period of 6 months from May 1 to October 31, 1999, the total amounts of precipitation and stream flow were 993.2 mm and $148,533,000m^3$ respectively. The loads of agricultural non-point sources accrued by land use were 83,526 kg, 24,508 kg, 49,705 kg, and 215 kg for total-N, ammonia-N, nitrate-N, and total-P, respectively. Results showed that 23.4 and 0.1 % of the applied nitrogen and phosphorus fertilizers, respectively, were estimated to load into the streams as agricultural non-point sources.

  • PDF

새만금 유역 주요 밭작물 작부체계 최적관리기법 시나리오별 농업비점오염원 저감 (Reduction of Agricultural Non-point Pollution Source by Scenarios of Best Management Practices on Cropping System Alternatives of Main Upland Crop in Saemangeum Watershed)

  • 손재권;이경애;유동수;조재영
    • Journal of Applied Biological Chemistry
    • /
    • 제57권1호
    • /
    • pp.95-101
    • /
    • 2014
  • 새만금 유역내 밭작물 재배 농경지의 작부체계와 관련된 최적관리기법을 적용하여 각각의 시나리오별로 농업비점오염원의 저감효과를 분석하였다. 또한 새만금 유역내 동진강 수계와 만경강 수계를 대상으로 행정구역별 작물양분의 투입량 실태분석과 향후 변화 추이에 대한 평가를 수행하였다. 새만금 유역 만경강 수계에서 2012년 기준으로 2020년에는 질소질비료 18%, 인산질비료 22%가 감소하는 추세였으며, 동진강 수계에서는 질소질비료 30%, 인산질비료 19%가 감소할 것으로 평가되었다. 반면, 퇴비의 경우에는 만경강 수계에서는 17%, 동진강 수계에서는 37% 정도 사용량이 증가할 것으로 추정되었다. 새만금 유역내 밭작물의 작부체계 변경과 관련된 최적관리기법 시나리오 가운데 Scenario 1 (동계작물 겉보리와 쌀보리를 경관 녹비작물인 헤어리벳치 또는 자운영으로 작부체계를 변경한 경우) 적용시 질소 41%, 인산 47%의 작물양분 투입량을 감소시키는 결과를 초래할 수 있는 것으로 나타났으며, Scenario 2 (화학비료 시비량이 많은 고추작물을 질소고정능력이 높은 콩작물로 작부체계를 변경한 경우) 적용시 질소 30%, 인산 23%의 작물양분 투입량을 감소시키는 결과를 초래할 수 있는 것으로 나타났으며, Scenario 3 (시나리오 1과 시나리오 2의 통합) 적용시 질소 72%, 인산 70%의 작물양분 투입량을 감소시키는 결과를 초래할 수 있는 것으로 평가되었다. 새만금 유역에서 담수호 수질보전을 위한 유역관리기법 개발시 작물양분요구량이 높은 작물의 재배를 최소화하고 양분배출형 작부체계가 아닌 양분흡수형 작부체계로의 전환을 통한 최적관리기법 모델 개발이 필요할 것으로 판단된다.