• Title/Summary/Keyword: Agricultural Energy

Search Result 1,835, Processing Time 0.021 seconds

HEATING PERFORMANCE OF AIR SOURCE HEAT PUMP WITH HEAT REGENERATIVE DEVICE USING FIBER BELT

  • Ryou, Y.S.;Chang, J.T.;Kim, Y.J.;Kang, G.C.;Yun, J.H.;Lee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.647-653
    • /
    • 2000
  • In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of $-7^{circ}C$ in heating mode.

  • PDF

The Northern China Agricultural Engineering of Farmer's Courtyard Energy Ecological System

  • Wei, Baorong;An, Xiangjun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.627-636
    • /
    • 1993
  • The so-called northern Agricultural Engineering of Farmer's courtyard Energy Ecological System is a courtyard-type energy ecological synthetic application system, that combines into one the biogas pool, pig house, toilet and plastic -membrane greenhouse in a fully-closed condition in farmer's court yard, a combination of farming with breeding industry, with bioga as the key linkage , by taking full advantage of solar energy and through bioenergy conversion technique in accordance with ecological principle.

  • PDF

Investigation on Regional Distribution of Potential Energy Production with Agricultural By-Products in Agricultural Sector

  • Park, Woo-Kyun;Lee, Sun-Il;Shin, Joung-Du;Kim, Gun-Yeob;Kim, Yi-Hyun;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.343-350
    • /
    • 2013
  • The objectives of this study were to estimate the potential biomass yield by using the biomass conversion index and evaluate the potential energy production by using the energy conversion index of biomass. Estimating the total biomass yield in Korea showed 9,646.3 thousand tons produced in 2012. Subsequent evaluation of the potential energy production using the estimated biomass yield in 2012 indicated that the calorific values were varied from 3,800 to 4,500 kcal $kg^{-1}$ for crop- and from 4,100 to 4,300 kcal $kg^{-1}$ for woody-based biomass, respectively. Among the examined biomass materials, the pruned branch of a nut tree appeared to be the greatest in bio-energy production showing 6,300 kcal $kg^{-1}$ in calorific value. Total potential energy production from agricultural by-products was estimated approximately at 3,966,000 TOE. Among the agricultural by-products examined, rice straw showed the greatest energy production potential being at 2,321,000 TOE. Furthermore, it might contribute to establishing the countermeasures of biomass utility in agricultural sector based on regional distribution chart of the potential biomass and energy yields in Korea.

A Study on Policy Alternatives for Major Changes in the Korea's Agricultural Energy System (우리나라 농업 에너지체계의 전환을 위한 정책대안 연구)

  • Jung, In-Whan;Ko, Soon-Chul
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.2
    • /
    • pp.251-265
    • /
    • 2004
  • The agricultural sector's economic structure in Korea is regarded to encounter major barriers on the way toward revitalizing its economic prosperity. Among many, the energy-related problem is one of prime nuclei embedded in the country's agricultural sector. The ought-to-come structural changes in the country's agricultural energy system hinge upon the central government's policy direction as well as efforts of local governments and local farming community members. The indirect aids via 'cross subsidy' of electricity tariff rate and 'tax-exempt price' of oil fuels are two notable causes of the unsustainable energy consumption pattern in the country's agricultural sector. As measures, demand-side management(DSM) and energy-efficiency promotions are regarded to be the most attractive methods for energy conservation and economic productivity as well. Development of renewable energy sources are also receiving a great deal of attention for the long-term alternatives to the country's existing oil-based agricultural production mode. This study examines the contributive potential of DSM approaches and renewables-based technologies. With the critical evaluation on the concurrent adversities of the country's agricultural energy system, various sources of renewable energy-solar power, wind power, biomass, etc.-are examined for the purpose of technological and economical viability. As sufficient potentials of renewable energy sources are being estimated, both the system production cost and the installation cost for the county's rural areas are expected to lower in the long term. DSM options are also evaluated to be fruitful even in the short term. Both the public and civil arenas must galvanise each side's effort in order to promote these policy options and community potentials.

  • PDF

Development of On-site Heat Loss Audit and Energy Consulting System for Greenhouse

  • Kwon, Jin Kyung;Kang, Geum Choon;Lee, Seong Hyun;Sung, Je Hoon;Yun, Nam Kyu;Moon, Jong Pil;Lee, Su Jang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.287-294
    • /
    • 2013
  • Purpose: Greenhouses for a protected horticulture covered with a plastic or glass are easy to have weakness in a heat loss by deterioration, damage, poor construction, and so on. To grasp the vulnerable points of heat loss of the greenhouses is important for heating energy saving. In this study, an on-site heat loss audit and energy consulting system were developed for an efficient energy usage of a greenhouse. Method: Developed system was mounted with infrared thermal and visual cameras to grasp the heat loss from the greenhouse quickly and exactly, and a trial calculation program of heating load of greenhouse to provide farmers with the information of heating energy usage. Results: Developed system could print out the reports about the locations and causes of the heat losses and improvement methods made up by an operator. The mounted trial calculation program could print out the information of the period heating load and fuel cost according to the conditions of greenhouse and cultivation. The program also mounted the databases of the information on the 13 horticultural energy saving technologies developed by the Korea Rural Development Administration and simple economic analysis sub-program to predict the payback period of the technologies. Conclusion: The developed system was expected to be used as the basic equipment for an instructors of district Agricultural Technology and Extension Centers to conduct the energy consulting service for the farmers within the jurisdiction.

Evaluation of input-output energy use in strawberry production in single-span double-layered greenhouses with different thermal-curtain positions

  • Timothy Denen Akpenpuun;Wook-Ho Na;Qazeem Opeyemi Ogunlowo;Anis Rabiu;Misbaudeen Aderemi Adesanya;Prabhat Dutta;Ezatullah Zakir;Hyeon-Tae Kim;Hyun-Woo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.437-448
    • /
    • 2023
  • The large amount of energy required for successful crop production is the main challenge in greenhouse cropping systems. As a response to this challenge a comprehensive evaluation of greenhouse energy consumption was carried out in two structurally similar single-span greenhouses with different thermal curtain positions, with particular attention to energy productivity, specific energy, net energy, and energy ratio. The greenhouses are used for strawberry production. In the R-greenhouse (RGH), the thermal curtain hanged directly at the roof ridge, whereas in the Q-greenhouse (QGH), the thermal curtain was placed 5° from an imaginary vertical axis, from the middle of the roof ridge downwards to the north side of the greenhouse roof. The relevant data were recorded using standard methods. The results indicated that the energy expended in the RGH and QGH systems was 2,186.48 and 2,189.26 MJ/m2, respectively. Electricity and nitrogen fertilizer contributed the highest energy input in both greenhouses and in all seasons. The output energy was 3.12 and 3.82 MJ/m2, respectively, in RGH and QGH in season I and 4.40 and 4.87 MJ/m2 in season II. In terms of energy expended, there was no significant difference between the two greenhouses, nor between the two seasons. These results indicate that greenhouses of the size used in this investigation are not viable in terms of energy productivity, energy-use efficiency, and subsequent economic performance. However, further studies should be conducted to scale-up the information obtained from this investigation.

Utilization of Solar Energy in Agricultural Machinery Engineering: A Review

  • Hussain, M. Imtiaz;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.186-192
    • /
    • 2015
  • Background: Various solar energy collecting systems have been developed and analyzed for agricultural applications. They include solar thermal and electric devices such as solar crop dryers, solar water pumps, solar greenhouse heating, ventilation for livestock, solar aeration pumps, solar electricity, and many more. Purpose: This review provides the current status of research and development in the field as well as the solar energy systems that are currently in use in the agriculture sector across the globe. Review: Solar energy is the largest and cheapest energy resource on earth; one hour of solar radiation exceeds the complete global energy consumption in one year. The potential annual total solar radiation in South Korea is $3.58-5.4 kWh/m^2/day$. The available solar energy is sufficient for agricultural applications across the entire country. Conclusion: The scope of solar energy utilization in agricultural machinery engineering in South Korea and in other countries is promising.

Influence of Radioactive Contamination to Agricultural Products Due to Rain During a Nuclear Accident

  • Won Tae Hwang;Eun Han Kim;Kyung Suk Suh;Moon Hee Han;Han Soo Lee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.415-420
    • /
    • 2002
  • The previous dynamic food chain model was improved for the consideration of the influence of radioactive contamination to agricultural products due to rain during the environmental releases of radionuclides in a nuclear accident Wet interception coefficients for the agricultural plants were derived as a function of radionuclide and rainfall amount, and mathematical formulations of the previous model were modified. As a result, rain during accidental releases was influential in agricultural contamination. The contamination level of agricultural products decreased dramatically according to increasing rainfall amount. It means that predictive concentrations in agricultural products using the previous model, in which dry interception to the agricultural plants is only considered, can be overestimated. The influence of rainfall in agricultural contamination was the most sensitive for $^{131}$ I, and the least sensitive for $^{90}$ Sr among the radionuclides considered in this study.

Classification Index and Grade Levels for Energy Efficiency Classification of Agricultural Heaters in Korea

  • Shin, Chang Seop;Jang, Ji Hoon;Kim, Young Tae;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2013
  • Purpose: This study was carried out to develop a classification index and grade levels to rate agricultural heaters for energy efficiency classification. Methods: The classification index was developed mainly by taking simplicity of calculation and easy access to relevant data into consideration. The grade levels were developed on the basis of a 5-grade classification system in which graded heaters are to be normally distributed over the grades. The value of each grade level were determined in terms of the classification index values calculated using the published performance data of agricultural heaters tested at the FACT in Korea over the past 12 years. Results: The thermal efficiency of agricultural heaters based on the enthalpy method was proposed as a reasonable classification index. The grade levels were proposed in equation form for three types of agricultural heaters: fossil fuel heaters, wood pellet heaters and wood pellet boilers. A reasonable energy efficiency classification of agricultural heaters could be performed using the proposed classification index and grade levels. Conclusions: It is expected that energy saving programs will be extended to agricultural machines in the near future. The classification index and grade levels to rate agricultural heaters for energy efficiency classification were developed and proposed for such near future to come.

Evaluation of Chinese Brown Rice as an Alternative Energy Source in Pig Diets

  • Piao, X.S.;Li, Defa;Han, In K.;Chen, Y.;Lee, J.H.;Wang, D.Y.;Li, J.B.;Zhang, D.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • A total of six crossbred barrows ($Duroc{\times}Landrace{\times}Large$ White, $44.17{\pm}1.94kg$ BW) were housed conducted to evaluate apparent fecal digestibilities of Brown Rice (BR) as an alternative energy source in growing pigs. Pigs were housed individually on metabolism crate on the basis of body weight. Four treatments contained: 1) 100% of corn-soybean meal (C100; Control diet), 2) 75% of corn-soybean meal diet plus 25% of corn meal (C25), 3) 100% of brown rice-soybean meal diet (BR100), 4) 75% of brown rice-soybean meal diet plus 25% of brown rice meal (BR25). Brown rice has an excellent gross energy and crude protein composition compared to corn. The BR used had 3,801 kcal of gross energy/kg, 8.0% crude protein, 2.6% of ether extract, 0.035% calcium and 0.35% total phosphorus. The best digestibilities of energy (87.75%), DM (81.71%) and CP (78.57%) were observed in BR 100 group and the worst were found in Corn 25 group. The nutrient digestibility was not significantly different in most nutrients. Through this experiment, BR appeared a good alternative energy source that can replace corn yellow to 100% in growing pigs. Therefore, the price relationship between corn and BR may provide an excellent opportunity for pork producers to use BR in order to reduce feed costs provided that diet has been balanced for digestible amino acids.