• Title/Summary/Keyword: Aging treatment behavior

Search Result 118, Processing Time 0.021 seconds

PRECIPITAlON BEHAVIOR OF 8090 ALUMINIUM ALLOY BY HERMOMECANICAL AND DUPLEX AGING TREAMENT (가공열처리 및 2단시효처리에 의한 8090알루미늄 합금의 석출거동)

  • Lee, Hag-Yong;Kim, Sug-Woo;Woo, Kee-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.270-276
    • /
    • 1994
  • The effects of thermomechanical and duplex aging treatment on precipitation behavior were investigated for the 8090 aluminium alloy by tensile test, hardness test, plane-strain fracture toughness test and electron microscope. Both pre-aging stretch and duplex aging with pre-aging stretch were effective to homogenize the distribution of S' phase in this alloys. The latter makes more homogeneous distribution of S' phase than that of the former, but the sizes of S' phase in both specimens are almost same. The size and distribution of 0' phase were not changed by thermomechanical or duplex aging treatment. The strength was increased by thermomechanical treatment, but the elongation was decreased. Duplex aging treatment couldn't change the strength and elongation. Pre-aging stretch and duplex aging with pre-aging stretch have same effect on the strength and elongation. The increase of strength by thermomechanical treatment in 8090 alumunium alloy was caused by homogeneously precipitated S' phase.

  • PDF

Phase Transformation Behavior on Aging Treatment in CuAINi Shape Memory Alloy (CuAINi 형상기억합금의 시효처리에 따른 상변태 거동)

  • Yang, G.S.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.213-222
    • /
    • 1993
  • This research was performed to investigate the transformation behavior and shape memory effect of Cu-13.5Al-4.5Ni(wt%) alloy with various aging temperature and time. The results obtained in this study are as follows: Transformation temperature was very increased when aging temperature is at $250^{\circ}C$. The variation of transformation temperature in first reverse transformation cycle and second was very significant, but there was little difference in case of 2nd and 3rd. Transformation temperature at various aging temperature was increased with increasing of aging temperature and time. Microvickers hardness was increased with increasing of aging temperature and time. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by aging of long time at high temperature.

  • PDF

Effect of Combined Addition of Ca and Y on Aging Behavior of Extruded AZ91 Magnesium Alloy (Ca과 Y 복합 첨가가 AZ91 마그네슘 압출재의 시효 거동에 미치는 영향)

  • Kim, H.J.;Kim, Y.M.;Bae, J.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.160-166
    • /
    • 2022
  • The purpose of this study is to investigate the effects of combined addition of Ca and Y on the precipitation and age-hardening behavior of an extruded AZ91 alloy by conducting the aging treatment at 200 ℃ for hot-extruded AZ91 and AZ91-0.3Ca-0.2Y alloys. In the AZ91 alloy, many Mg17Al12 discontinuous precipitate (DP) bands formed during air cooling immediately after extrusion are present, whereas in the AZ91-0.3Ca-0.2Y alloy, a few DP bands and numerous Al2Y, Al8Mn4Y, and Al2Ca phase particles are distributed along the extrusion direction. The peak-aging time of the AZ91-0.3Ca-0.2Y alloy is 16 hours, twice that of the AZ91 alloy. Although both alloys have similar hardness before aging treatment, the hardness after peak-aging treatment (i.e., peak hardness) of the AZ91-0.3Ca-0.2Y alloy is higher than that of the AZ91 alloy, as 93.1 and 88.7 Hv, respectively. The microstructures of both peak-aged alloys comprise DPs and continuous precipitates (CPs). However, the peak-aged AZ91-0.3Ca-0.2Y alloy has a smaller amount of DPs and a larger amount of CPs than the peak-aged AZ91 alloy. Additionally, the inter-particle spacings of DPs and CPs in the former are significantly narrower than those in the latter. These results demonstrate that the addition of small amounts of Ca and Y to a commercial AZ91 alloy considerably affects the formation rate, size, and amount of CPs and DPs during aging and resultant age-hardening behavior.

The softening behavior of Mg-Li-Al(-Zr) alloys (Mg-Li-Al(-Zr) 합금의 연화현상)

  • Kim, Y.W.;Kwang, Y.H.;Lim, Y.J.;Kim, D.H.;Hong, C.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • The softening behavior of squeeze cast Mg-Li-Al and Mg-Li-Al-Zr alloys have been investigated. The highest hardness values of Mg-Li-Al and Mg-Li-Al-Zr alloys were obtained after solution treatment at $400^{\circ}C$ for 1 hour. The hardness value, however, decreased as the aging temperature and time increased. Microstructural and calorometric analyses showed that quenched-microstructure changed from primary (${\alpha}$ and ${\beta}$)+secondary ${\alpha}$ to primary(${\alpha}$ and ${\beta}$)+secondary ${\alpha}+{\theta}$ after aging. The softening during aging was due to the coarsening of ${\theta}$ precipitates.

  • PDF

Effect of Aluminum and Solute N on the Strain Aging of Extremely Low-Carbon Automotive Steel Strengthened with Cu sulfide (초극저탄소 Cu강화형 자동차용 강판 변형시효에 미치는 Aluminum 및 고용질소의 영향)

  • Hong, Moon-Hi;Yang, Hye-mi;Song, Seung-Woo;Han, Seong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • The precipitation behavior of solute carbon and nitrogen strongly affects the mechanical properties of low-carbon automotive panel. In the present study, the effects of aluminum and solute nitrogen on the bake hardenability and strain aging of extremely low-carbon steel with carbon content below 15 ppm has been investigated. The ferrite grain size and distribution of precipitates were varied with the amount of aluminum content of 0.003 to ~ 0.100 wt% in a constant solute carbon and nitrogen. With increasing the aluminum content, the ferrite grain size is increased and strain aging is delayed. The strain aging is also delayed by increasing the annealing temperature, although the ferrite grain size is not much changed.

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

The Corrosion Behavior Study by AC Impedance Method for the Aging Heat Treated Nimonic 80A Superalloy (교류임피던스법에 의한 Nimonic 80A 초내열합금 시효열처리재의 부식거동 고찰)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.761-769
    • /
    • 1999
  • In this paper the effect of aging heat treatment to the Corrosion behavior for the Nimonic 80A superalloy was studied by AC Impedance methods. Tested solution was 3.5% with tempera-ture $25^{\circ}C$ Electro-chemical corrosion test were carried out for the Nimonic 80A super-alloy which solution heat treated at $1080^{\circ}C$ for 8 hours followed by aging heat treated at $650^{\circ}C,\;700^{\circ}C,\;750^{\circ}C\;800^{\circ}C$ and $850^{\circ}C$ with 16hours under vacuum environment. The obtained results were as follows; 1. Base metal and solution-treated materials were exhibited similar corrosion tendency as Ran-dle equivalent cell. The value of passive film resistance was 579 ohms for the base metal and 124,770 ohms for the solutionized metal such a difference was arose by the ${{\gamma}_^'}$ precipitate on the metal surface during heat treatment. 2. The measure value of $R_p$ for heat-treated at $650^{\circ}C,\;700^{\circ}C,\;800^{\circ}C$and $850^{\circ}C$ were 97,943, 93, 111, 26,961, 15,798 and 11,780ohm respectively. Which indicated that the passive film resistance Rp was reduced as aging temperature increased due to the growth of grain size and sensitization at the grain boundary. 3. The similar tendency was exhibited for corrosion behavior of the electro-chemical corrosion polarization method and AC impedance method and confirmed that AC impedance method was useful tool for corrosion research.

  • PDF

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF

Surface Composition Change of UV/Ozone Modified Polypropylene (UV/오존에 의해 개질된 폴리프로필렌의 표면 조성 변화)

  • Kim, J.I.;Ryu, S.H.
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • Polypropylene is oxidized with UV/ozone as a function of UV treatment time and ozone flow rate and its surface characteristics are investigated using contart angle measurements and XPS. The aging behavior of oxidized surface is investigated under air, water and ethylene glycol as the aging media. Adhesion strength is also investigated using a lap shear test. Polar surface energy increases with increasing UV/ozone treatment time as well as ozone flow rate. No polar surface energy change is observed under water aging, while under air aging it decreases significantly within 2-3 days and reaches the close value as that of the untreated PP. Adhesion strength increases with increasing UV/ozone treatment time as well as ozone flow rate.

Precipitation Behavior of Al-Zn-Mg-Cu-(Sc) Alloy (Al-Zn-Mg-Cu-(Sc) 합금의 석출특성)

  • Choi, G.S.;Mun, H.J.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Scandium(Sc) in Al-Zn-Mg-Cu based Al alloy on precipitation phenomenon was compared to a 7001(Al-7.2%Zn-3.2%Mg-1.8%Cu) Al alloy. GP zone and ${\eta}^{\prime}$ phases were the main strengthening phases at low aging temperature under $100^{\circ}C$, but ${\eta}^{\prime}$ and $Al_3Sc$ phases were the main strengthening phases at high aging temperature above $1600^{\circ}C$ in Sc added 7000(Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr) Al alloy. With the addition of 0.1%Sc in 7000 Al alloy, the activation energy for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phase decreased compared to the 7001 Al alloy. This result indicates that the Sc accelerated the precipitation for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phases in 7000 Al alloy. Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr-0.1 Sc alloy has higher strength than 7001 Al alloy, which has high strength.