• Title/Summary/Keyword: Aging strength

Search Result 878, Processing Time 0.028 seconds

The Study on Characteristics for Thermal Aging of the Layer Insulation in Transformers (변압기 층간 절연지의 열열화 특성 평가에 관한 연구)

  • 이병성;송일근;김동명;박동배;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.406-409
    • /
    • 2002
  • The primary insulation system used in an oil-filled transformer is Kraft paper, wood, porcelain and, of course, oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. These insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

Effect of Curing Temperature and Aging on the Mechanical Properties of Concrete (II) -Evaluation of Prediction Models- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(II) -예측 모델식을 중심으로-)

  • 한상훈;김진근;양은익
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2000
  • In paper I, the relationships between compressive strength and splitting tensile strength or modulus of elasticity were proposed. In this paper, new prediction model is investigated from estimating splitting tensile strength and modulus of elasticity with curing temperature and aging without compressive strength. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values of paper I. To evaluate in-situ applicability of the model, strength and modulus of elasticity tested with variable temperatures are estimated by the prediction model. The prediction model reasonably estimates the strength and the modulus of elasticity of type I and V cement concretes tested in paper I and experimental results with variable temperature tested in this paper.

Effect of Aging on Adhesive Strength of Rubber-steel Cord Composite and Tire-endurance (고무-스틸 코드 접착력과 타이어 내구력에 미치는 노화의 영향)

  • Lim, Won-Woo
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • We invested effect of the keeping-time of uncured composite and thermal aging, of cured composite on adhesive strength for rubber-brass coated steel cord composite in this study. We also evaluated how the adhesive strength affects to tire endurance. Using PAD adhesion specimen, peel adhesive strength was measured. The uncured composite was kept for several days up to 35 days in factory. Cured composite was also kept for 5 and 10 days at $85^{\circ}C$ in dry oven. Peel adhesive strength was decreased with increasing keeping-time and showed lower value with increasing thermal aging time. The lower peel adhesive strength, the lower tire-endurance. This fact was caused by the humidity and thermal aging which affected in the decrease of adhesive strength of the rubber-steel cord composite and resulted in interface fracture between rubber and steel cord. This phenomenon was confirmed from SEM investigation and tire-endurance. It was just known that corrosion of steel cord's surface and aging of adhesive layer strongly affected to decrease of adhesive strength. This resulted in directly decreasing tire-endurance.

  • PDF

The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

  • Kim, Hyung-Tae;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.113-117
    • /
    • 2009
  • STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad $S\ddot{a}ckingen$, Germany) were prepared in 40 mm (length) $\times$ 4 mm (width) $\times$ 3 mm (height) samples. Specimens were artificially aged in distilled water by heat-treatment at a temperature of 75, 100, 125, 150, 175, 200, and $225^{\circ}C$ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences ($\alpha$= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below $125^{\circ}C$ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above $150^{\circ}C$, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above $100^{\circ}C$. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above $175^{\circ}C$. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.

The Effect of Aging Treatment on the Microstructure and Mechanical Properties of Super Duplex Stainless Steel with W (W이 첨가된 슈퍼 2상 스테인리스강의 미세조직과 기계적성질에 미치는 시효처리의 영향)

  • Kim, Soo-Chun;Bae, Dong-Soo;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.52-57
    • /
    • 2009
  • The effect of aging treatment on the microstructure and mechanical properties of super duplex stainless steel with W was investigated. The phase was precipitated mainly at the early stage of aging and a lower aging temperature under $750^{\circ}C$, but the phase was formed after long-term aging treatment between $600^{\circ}C$ and $900^{\circ}C$. The volume fraction of the phase increased with aging temperature up to $750^{\circ}C$ and then decreased up to $900^{\circ}C$. With an increase in the aging time, the volume fraction phase at the early stage of aging increased slightly, and then increased rapidly beyond a certain time. The rapid increase in the tensile strength and hardness and decrease in the elongation and impact toughness were measured with aging temperatures up to $750^{\circ}C$. On the other hand, the tensile strength and hardness decreased slightly, and the elongation and Charpy impact toughness were unchanged with aging temperatures over $750^{\circ}C$. The tensile strength and hardness increased rapidly at the early stage of aging, and then increased slowly beyond a certain time. The elongation and Charpy impact toughness decreased rapidly at the early stage of aging, and then remained unchanged beyond a certain time. The phase that formed at the early stage of aging and the lower aging temperature had a considerable effect on the elongation and Charpy impact toughness of the super duplex stainless steel with W.

The Evaluation of Thermal Aging Characteristics in Insulating Paper for the Use of the Pole Transformers (가속열화 방법에 의한 주상변압기 절연물의 열열화 특성 평가)

  • Lee, Byung-Sung;Song, Il-Keun;Lee, Jae-Bong;Park, Dong-Bae;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.100-103
    • /
    • 2003
  • The primary insulation system used in an oil-filled transformer is kraft paper, wood, porcelain and oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. But these insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

Effect of the Solution Treatment & Aging Treatment on the Microstructure & Mechanical Property of 17-4 PH Stainless Steel (용체화처리 및 시효처리가 17-4 석출경화형 스테인레스강 정밀주조품의 미세조직 및 기계적 성질에 미치는 영향)

  • Yu, Sung-Kon;Lee, Kyong-Whoan;Ra, Tae-Yeob
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.397-402
    • /
    • 1992
  • The effect of the solution & aging treatment on the tensile strength, yield strength, elongation, reduction of area, hardness was studied in the 17-4 PH stainless steel. SEM pictures were also taken in order to examine the fracture surfaces and precipitated particles. X-ray diffraction patterns for the heat treated samples were also observed. Mechanical properties of the heat treated samples were superior to those of as cast samples. Tensile strength, yield strength, hardeness decreased with the increase of aging temperature. On the other hand, elongation and reduction of area increased as the aging temperature increased.

  • PDF

Effect of Aging on the Interfacial Characteristics of ${Al_{18}}{B_4}{O_{33}}$/AS52 Mg Matrix Composite by Squeeze infiltration (용탕가압침투법으로 제조한 ${Al_{18}}{B_4}{O_{33}}$/AS52 Mg기 복합재료의 계면 특성에 미치는 시효의 영향)

  • Park, Yong-Ha;Park, Yong-Ho;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.268-272
    • /
    • 2008
  • Interfacial characteristics of aluminum borate whisker reinforced AS52 matrix composite was investigated. Peak hardness of AS52 composite was obtained aging at $170^{\circ}C$ for 15h and the aging process was accelerated by the presence of the aluminium borate whisker. The MgO layer, which was the interfacial reaction product between the reinforcement and the Mg matrix, was produced with 20 nm thickness in as-cast condition. As the aging time increased, the thickness of the interfacial reaction layer increased to 50 nm in peak aged condition. The nano-indentation test results indicated that the strength of interface was improved by the aging but over-aging degraded the reinforcement and decreased the interfacial strength which resulted in the decrease of overall composite strength.

Elastic Wave Characteristics of Incoloy 825 with Different Solution Treatment Temperature and Aging Time (용체화처리 온도 및 시효 시간이 다른 Incoloy 825의 탄성파 특성)

  • Lee, Seong-Gu;Choi, Byoung-Chul;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.261-269
    • /
    • 2021
  • This study was evaluated the elastic wave properties according to tension of Incoloy 825 alloy with different solution treatment temperature and aging time. Solution treatment was carried out at 700, 800, 900, and 1000 ℃ for 1 hour, and aging was carried out at 700 ℃ for 1, 5, 10, and 30 hours. As the solution treatment temperature increased, the tensile strength decreased and the elongation increased. However, as the aging time increased, the tensile strength increased and the elongation decreased. The dominant frequency decreased as the solution treatment temperature increased, but increased as the aging time increased. The dominant frequency according to the solution treatment and aging time increased as the tensile strength increased, but increased despite the decrease in elongation.

Effect Of The Microstructure And Aging Treatment Conditions On Strength Of High Strength Invar Alloy (고강도 인바합금의 강도에 미치는 미세구조와 시효처리 조건의 영향)

  • Jung, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.322-325
    • /
    • 2007
  • Precipitation characteristics of the Fe-36Ni based high strength Invar alloy for power transmission wire was investigated in this study. High strength can be obtained in this alloy through solution hardening, precipitation hardening and strain hardening by cold working. In the present study, ingots of Fe-36Ni based Invar alloys with the contents of C, Mo and V varied. Microstructure observations by OM, SEM, and TEM were carried out to validate the simulation results. BCC phase and $FeNi_3$ phase are also expected at lower temperatures below $500^{\circ}C$. Aging treatments were carried out at temperatures ranging from 400 to $900^{\circ}C$ for time intervals from 3 min to 100hrs. Peak aging condition was obtained as $400^{\circ}C$ and 1 hr. With temperature increased, peak strength was decreased abruptly. Microstructure observation was conducted by optical microscopy, scanning electron microscopy, and transmission electron microscopy.

  • PDF