• 제목/요약/키워드: Aging bridges

검색결과 82건 처리시간 0.016초

XGBoost를 활용한 시설물의 부재 상태 예측 (Condition Estimation of Facility Elements Using XGBoost)

  • 장태연;윤시후;지석호;임석빈
    • 한국건설관리학회논문집
    • /
    • 제24권1호
    • /
    • pp.31-39
    • /
    • 2023
  • 시설물의 고령화로 인한 유지관리 비용을 줄이고 안전성을 확보하기 위해서는 시설물 유지관리 데이터를 활용하여 향후 시설물의 상태를 예측하고 이를 유지관리 의사결정에 활용하는 것이 중요하다. 이를 위해 본 연구는 XGBoost를 활용하여 다양한 유지관리 정보로부터 향후 시설물의 부재 상태를 추정하는 방법론을 제안함을 목표로 한다. 방법론의 유효성을 검증하기 위해 교량시설물을 대상으로 샘플 데이터를 구축하고, 차기 정밀안전점검 및 정밀안전진단 시 부재 상태등급 예측모델을 개발 및 평가했다. 예측모델의 성능 평가 결과, 주요 부재(바닥판, 주형, 교대/교각) 상태등급을 예측하는 데 준수한 성능을 보였다(평균 F1 score 0.869). 또한 개발된 예측모델의 실무적 활용 가능성을 실증하기 위해 FMS 유지관리 데이터 관리 기능과 주요부재 상태등급 예측 기능을 제공하는 테스트베드를 구축했다. 이를 통해 본 연구에서 구축한 샘플 데이터와 예측모델을 활용하여 시설물 관리자에게 유지관리 의사결정에 필요한 시설물 정보 및 시설물 상태 예측정보를 제공할 수 있음을 확인할 수 있었다. 향후에는 추가적으로 데이터를 수집하고 다량의 데이터가 축적된 경우 좋은 성능을 보인다고 알려진 딥러닝 알고리즘을 활용함으로써 예측 성능을 높일 수 있다. 또한 제안된 방법론을 터널, 항만 등 다양한 시설물에 적용하여 상태등급 예측모델을 개발할 수 있다.

가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델 (Bridge Safety Determination Edge AI Model Based on Acceleration Data)

  • 박진효;홍용근;윤주상
    • 한국산업정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-11
    • /
    • 2024
  • 교량은 노후화와 지진, 유지보수 미비, 기상환경 등의 외부 요인에 의해 균열과 손상이 발생한다. 노후화 교량이 늘어나고 있는 상황에서 유지보수 작업을 진행하지 않으면 안전성이 저하되어 구조적 결함과 붕괴 문제가 발생할 수 있다. 이러한 문제를 예방하고 유지보수 비용을 절감하기 위해 교량의 상태를 모니터링하고 신속하게 대응할 수 있는 시스템이 필요하다. 이를 위해 기존의 연구에서 센서 데이터를 이용해 균열 위치와 정도를 파악하는 인공지능 모델이 제안되었다. 하지만 기존 연구에서 모델의 성능을 파악할 때 실제 교량의 데이터를 사용하지 않고 시뮬레이션을 통해서 교량의 형상을 제작하여 데이터를 획득하여 학습에 사용하였기 때문에, 실제 교량의 환경을 반영하지 못하고 있다. 본 논문에서는 실제 현장에서 발생하는 교량의 가속도 데이터를 활용하여 인공지능 기반 교량의 이상을 감지하는 '교량 안전 판단 Edge AI 모델'을 제안한다. 이를 위해 가속도 데이터에서 유효 데이터를 추출하기 위한 필터링 규칙을 새롭게 정의하고 이를 적용하는 모델을 구성하였다. 또한 현장에서 수집된 데이터를 기반의 제안된 교량 안전 판단 Edge AI 모델의 성능을 평가하였다. 그 결과 F1-Score가 최대 0.9565로 실제 교량의 데이터를 이용해 안전성을 판단할 수 있음을 확인할 수 있었고, 실제 충격 데이터를 유사한 데이터 패턴을 생성하는 규칙일수록 좋은 성능의 결과가 나왔다는 것을 확인하였다.