비구조화 P2P 시스템은 오늘날 인터넷에서 가장 널리 사용되지만, 파일의 배치는 임의로 이루어지며, Peer와 컨텐츠간에는 어떤 상관관계도 존재하지 않는다. 또한 보낸 모든 질의가 원하는 데이터를 찾았는지에 대한 보장도 없다. 본 논문에서는 비구조화된 P2P시스템에서 군집형 계층 클러스터링을 사용하여 노드들을 클러스터화함으로써 검색을 향상시키는 방법을 제시한다. 제안한 기법과 k-means를 사용한 기법간에 노드 클러스터링을 위한 지연시간을 비교하였다. 또한 제안한 알고리즘, k-means 클러스터링, 클러스터링을 사용하지 않은 방법간에 한 네트워크 토폴로지에서 데이터를 찾기 위한 지연시간에 대해 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 기법의 지연시간이 다른 방법들보다 짧았음을 알 수 있었다.
최근 스마트 폰 이용자 수가 증가하면서 다양한 위치 기반 서비스들이 주목을 받고 있다. 위치 기반 서비스는 사용자의 위치와 시스템이 가지고 있는 다양한 정보를 결합하여 사용자에게 유용한 정보를 전달해 주기도 하지만 이로 인한 개인 정보의 침해 가능성 역시 높은 것이 사실이다. 최근의 위치 기반 서비스에서의 프라이버시 관련 연구는 K-anonymity를 만족하는 Cloaking 영역 생성에 중점을 두고 있다. 본 논문에서는 위치 기반 서비스를 위한 계층 클러스터 기반 Cloaking 알고리즘을 제안한다. 제안 기법은 약간 변형된 응집 계층 클러스터링 기법을 사용해서 트리를 생성한 뒤, Reciprocity 성질을 만족시키는 Cloaking 영역을 생성한다. 제안 기법은 Reciprocity 성질을 만족시키며, Hilbert Cloak보다 작고 RC-AR과 비슷한 크기의 영역을 생성하며, 생성 속도는 Hilbert Cloak과 비슷하며 RC-AR보다는 훨씬 빠르다.
본 논문에서는 사용자들이 노래 가사를 입력으로 음악을 검색할 때 사용자의 질의어 특징을 반영한 검색 방법을 제안한다. 일반적으로 노래 가사 검색에서 사용자들이 작성하는 질의어들은 음악 하이라이트 부분에 해당된다는 점을 고려하여 본 논문에서는 노래 가사를 색인할 때, 하이라이트 부분이 더 중요하도록 만든다. 이를 위해 본 논문에서는 응집 계층 군집화를 사용하여 자동으로 음악 하이라이트 부분을 찾고, 하이라이트 부분과 그 주변 부분을 중요하게 고려할 수 있는 가우시안 중요도를 제안한다. 이 가우시안 함수는 평균을 하이라이트 부분으로 설정함으로써 하이라이트에서 가장 높은 값을 가지며, 주변부는 하이라이트보다 낮은 중요도를 가진다. 이렇게 얻어진 중요도와 함께 노래 가사를 색인함으로써 사용자들이 작성한 질의어에 대해 더 부합하는 검색 결과를 제공해준다. 실험에서 실사용자 5명에 대해 다양한 질의 타입들과 함께 평가하였으며, 가중치를 고려하지 않는 비교 모델보다 제안한 방법이 효과적임을 보인다.
패스파인더 네트워크를 사용하여 지적 구조의 분석과 규명을 시도한 여러 연구가 발표되었다. 패스파인더 네트워크는 다차원척도법에 비해서 여러 장점을 가지고 있지만 구축 알고리즘의 복잡도가 매우 높아서 실행 시간이 오래 걸리며, 전통적인 지적 구조 분석에 유용하게 사용되어온 군집분석을 함께 적용하기가 어려운 것이 단점이다. 이 연구에서는 이와 같은 패스파인더 네트워크의 약점을 보완할 수 있는 새로운 기법으로 병렬최근접이웃클러스터링(PNNC) 기법을 제안하였다. PNNC 기법의 클러스터링 성능을 전통적인 계층적 병합식 클러스터링 기법들과 비교해본 결과 효과성과 효율성 양면에서 기존 기법보다 우세한 것으로 확인되었다.
고객세분화는 기업이 관계하고 있는 고객을 이해하고 그 이해를 바탕으로 효과적인 고객관리를 수행하기 위해 필수적인 요소인데 데이터마이닝이 기업의 정보관리영역에 적극적으로 활용되면서 보다 과학적이고 최적화된 형태로 개발되고 있다. 본 연구에서는 신용카드고객 의 카드사용행태에 근거하여 각 고객을 서로 유사한 사용행태를 보이는 고객군으로 세분화하는 과정을 소개하였다. 고객이 실제로 신용카드를 사용하면서 발생시킨 거래정보에만 의존하여 고객세분화를 개발하였으며 이는 마케팅의 관점에서 상당히 의미있는 내용이 될 수 있다. 고객세분화의 개발을 위하여 데이터마이닝기법인 k-평균 군집방법과 최장연결법에 의한 계보적 군집방법을 단계적으로 활용하는 이단계 군집방법을 이용하였다.
능동적 학습(active learning)은 소수의 라벨 데이터로 구성된 훈련 집합이 주어진 경우에 분류기 학습에 가장 도움이 될 만한 언라벨드 데이터를 선택하여 전문가에 의한 라벨링을 통해 훈련 집합에 포함시키는 과정을 반복함으로써 분류기의 성능을 향상시키는 것을 목적으로 한다. 본 논문에서는 워드 연결(ward's linkage)을 이용한 계층적 군집화(hierarchical clustering)를 바탕으로 한 능동적 학습 방법을 제안한다. 제안된 방법은 각 군집에서 적어도 하나의 샘플을 포함하도록 초기 훈련 집합을 능동적으로 구성하거나 또는 기존의 훈련 집합을 확장함으로써 전체 데이터 분포를 반영할 수 있게 한다. 기존의 능동적 학습 방법들 중 대부분은 초기 훈련 집합이 주어져 있을 경우를 가정하는 반면에 제안하는 방법은 초기 클래스 정보를 가진 훈련 데이터가 주어지지 않은 경우와 주어진 경우에 모두 적용 가능하다. 실험을 통하여 제안하는 방법이 비교 방법들에 비해 분류기 성능을 크게 향상시킬 수 있는 효과적인 데이터 선택을 수행함을 보인다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권2호
/
pp.138-143
/
2006
In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.
본 연구는 두 공간정보의 대응 클래스 군집 쌍 탐색을 중심으로 의미론적 정합과정에서 발생하는 M:N 대응관계를 분석하는 방법을 제안한다. 객체의 공유 관계를 이용하여 클래스의 유사도를 측정하고 높은 유사도를 가지는 클래스들을 군집화함으로써 M:N 대응관계를 탐색하고자 한다. 클래스 사이의 유사도를 그래프 모형으로 표현하고 그래프 임베딩 기법을 적용하여 투영공간에서 클래스 사이의 거리가 클래스 중첩분석에 의한 국지적 유사도에 반비례하도록 개별 클래스들의 투영좌표를 계산하고 군집화를 수행함으로써 계층적 대응 군집 쌍을 탐색할 수 있다. 제안된 방법을 평가하기 위하여 경기도 수원시의 수치지형도와 연속지적도에 적용하여 수치지형도의 면 객체 레이어와 연속지적도의 필지 지목의 대응 군집 쌍을 탐색하였다. 탐색된 대응 클래스 쌍의 F-measure를 측정한 결과 약 0.80에서 0.35 사이의 다양한 값을 얻을 수 있었으며, 클래스 명칭과는 상이한 다양한 대응관계를 얻을 수 있었다.
인터넷 통신의 발달 및 워드프로세서의 기능 향상으로 인해 일선 교육현장에서의 표절은 심각한 문제가 되고 있다. 본 연구에서는 C, C++, Java 등으로 작성된 프로그램 소스 코드들의 유사도를 측정하는 방법을 제시하고, 소스 코드를 계층적으로 군집화하고 표절 결과를 수형도로 시각화하는 방법을 제시한다. 채점자는 시각화된 수형도를 보고 임계값을 설정하여 표절 그룹을 분리할 수 있다. 실제 데이터에서 효과를 알아보기 위해서 학부 1학년생 컴퓨터 개론 및 실습과목 강의 중에 제출된 과제물 프로그램을 이용하여 실험해 보았으며, 유용하고 현실성 있는 방법임을 확인하였다.
클러스터링(Clustering)은 유사한 문서나 데이터를 묶어 군집화해주는 프로세스이다. 클러스터링은 문서들을 대표하는 개념별로 그룹화함으로써 사용자가 자신이 원하는 주제의 문서를 찾기 위해 모든 문서를 검사할 필요가 없도록 도와준다. 이를 위해 유사한 문서를 찾아 그룹화하고, 이 그룹의 대표되는 개념을 도출하여 표현해주는 기법이 요구된다. 이 상황에서 문제점으로 대두되는 것이 복합 개념(Complex Concept)의 탐지이다. 복합 개념은 서로 다른 개념의 여러 클러스터에 속하는 중복 개념이다. 기존의 클러스터링 방법으로는 문서를 클러스터링할 때 동일한 레벨에 있는 서로 다른 개념의 클러스터에 속하는 중복된 복합 개념의 클러스터를 찾아서 표현할 수가 없었고, 또한 복합 개념과 각 단순 개념(Simple Concept) 사이의 의미적 계층 관계를 제대로 검증하기가 어려웠다. 본 논문에서는 기존 클러스터링 방법의 문제점을 해결하여 복합 개념을 쉽게 찾아 표현하는 방법을 제안한다. 기존의 계층적 클러스터링 알고리즘을 변형하여 동일 레벨에서 중복을 허용하는 계층적 클러스터링(Hierarchical Overlapping Clustering, HOC) 알고리즘을 개발하였다. HOC 알고리즘은 문서를 클러스터링하여 그 결과를 트리가 아닌 개념 중복이 가능한 Lattice 계층 구조로 표현함으로써 이를 통해 여러 개념이 중복된 복합 개념을 탐지할 수 있었다. HOC 알고리즘을 이용해 생성된 각 클러스터의 개념이 제대로 된 의미적인 계층 관계로 표현되었는지는 특징 선택(Feature Selection) 방법을 적용하여 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.