• 제목/요약/키워드: Agglomerative Hierarchical Clustering

검색결과 43건 처리시간 0.021초

기기적 측정조건을 달리하여 측정한 쌀밥의 조직감 특성 변화 (Variations in the texture properties of cooked rice as a function of instrumental parameter conditions)

  • 최원석;서한석
    • 한국식품과학회지
    • /
    • 제48권5호
    • /
    • pp.521-524
    • /
    • 2016
  • 쌀밥의 조직감 측정시 가장 보편적으로 사용되는 텍스처 프로파일 분석(TPA)에 있어서, 모방적기기인 texture analyser를 사용하여 측정조건, 즉 압착율과 탐침이동속도를 달리하면서 4종류의 즉석쌀밥 시료들에 대한 경도, 점착성, 응집성, 씹힘성 및 탄성을 측정하였다. 4종류의 즉석쌀밥 시료들은 압착율과 탐침이동속도가 달라짐에 따라, 각각의 조직감 특성에 있어서 시료들 사이에 유의적인 차이를 보이거나 보이지 않는 변화를 보였다. 또한, 다섯가지 조직감 특성을 모두 고려하여 군집분석을 수행했을 경우에도 측정조건에 따라서 4종류 시료들이 서로 다르게 그룹화되는 것을 볼 수 있었다. 더불어, 쌀밥의 조직감 평가시 사용되는 '점착성/경도'값도 측정조건에 따라 4종류 시료들이 서로 다른 값을 보여주었다. 이들 결과를 토대로, 쌀밥의 조직감 측정시 쌀밥의 관능적 조직감 특성을 객관적으로 언급할 목적으로 기기적 측정을 수행한다면, 여러 분석을 통해 관능검사 결과와 가장 부합하는 측정 조건을 선택하는 것이 필요하며, 특정한 기기적 측정조건을 설정할 경우 실험목적에 따라 여러 특성을 고려하여 적합한 측정조건을 설정하는 것이 매우 중요하다 하겠다.

고객정보와 상품네트워크 유사도를 이용한 시장세분화 기법 (A Market Segmentation Scheme Based on Customer Information and QAP Correlation between Product Networks)

  • 정석봉;신용호;구서룡;윤협상
    • 한국시뮬레이션학회논문지
    • /
    • 제24권4호
    • /
    • pp.97-106
    • /
    • 2015
  • 시장세분화를 위해 일반변수와 트랜잭션 기반 변수를 동시에 사용하는 하이브리드 방법이 널리 사용되고 있지만, 하이브리드 방법에는 일반변수의 기준에 따라 정확하게 세분화가 되지 않는 문제점이 존재한다. 본 연구에서는 이러한 문제점을 해결함과 동시에 상품 정보를 이용한 네트워크 분석을 활용하는 새로운 시장세분화 방법을 개발하는 것을 목표로 한다. QAP 상관관계분석을 이용하여 상품네트워크의 유사도를 계산하는 새로운 시장세분화 방법은 일반 변수 기준으로 시장을 명확하게 세분화하고, 상품 정보를 기반으로 하여 세분화된 집단 간의 구매패턴을 효과적으로 비교할 수 있도록 하는 장점을 갖고 있다. 본 연구를 통해 개발된 상품구매정보를 활용한 네트워크 기반 시장세분화 방법의 활용 가능성과 성과를 입증하기 위해 실제 운영중인 온라인 쇼핑몰의 고객정보와 상품구매정보를 수집하여 시장세분화 방법의 절차를 설명하고 결과를 제시한다. 본 연구에서 제안된 시장세분화방법은 기본적인 고객정보 및 상품구매정보를 이용하여 상품구매패턴이 유사한 고객 집단을 인구통계학적인 일반변수 기준으로 세분화할 수 있기 때문에 대다수의 온 오프라인 유통업체에서 폭넓은 활용이 가능할 것으로 기대된다.

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.