A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The 'local' segmentor of the first stage performs region-growing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. The 'global' segmentor of the second stage, which has not spatial constraints for merging, clusters the segments resulting from the previous stage, using the conventional agglomerative approach. Using simulation data, the proposed method was compared with another hierarchical clustering technique based on 'mutual closest neighbor.' The experimental results show that the new approach proposed in this study considerably increases in computational efficiency for larger images with a low number of bands. The technique was then applied to classify the land-cover types using the remotely-sensed data acquired from the Korean peninsula.
데이터 사이즈가 증가함에 따라서 대용량 데이터를 분석하여 데이터의 특성을 파악하는 것이 매우 중요해졌다. 본 논문에서는 분산 병렬 처리 프레임워크인 맵리듀스를 활용한 k-Means 클러스터링 기반의 효과적인 클러스터링 기법인 MCSK-Means (Multi centroid set k-Means)알고리즘을 제안한다. k-Means 알고리즘은 임의로 정해지는 k개의 초기 중심점들의 위치에 따라서 클러스터링 결과의 정확도가 많은 영향을 받는 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여, 본 논문에서 제안하는 MCSK-Means 알고리즘은 k개의 중심점들로 이루어진 m개의 중심점 집합을 사용하여 임의로 생성되는 초기 중심점의 의존도를 줄였다. 또한, 클러스터링 단계를 거친 m개의 중심점 집합들에 속한 중심점들에 대하여 직접 계층 클러스터링 알고리즘을 적용하여 k개의 클러스터 중심점들을 생성하였다. 본 논문에서는 MCSK-Means 알고리즘을 맵리듀스 프레임워크 환경에서 개발하여 대용량 데이터를 효율적으로 처리할 수 있도록 하였다.
최근 스마트 폰 이용자 수가 증가하면서 다양한 위치 기반 서비스들이 주목을 받고 있다. 위치 기반 서비스는 사용자의 위치와 시스템이 가지고 있는 다양한 정보를 결합하여 사용자에게 유용한 정보를 전달해 주기도 하지만 이로 인한 개인 정보의 침해 가능성 역시 높은 것이 사실이다. 최근의 위치 기반 서비스에서의 프라이버시 관련 연구는 K-anonymity를 만족하는 Cloaking 영역 생성에 중점을 두고 있다. 본 논문에서는 위치 기반 서비스를 위한 계층 클러스터 기반 Cloaking 알고리즘을 제안한다. 제안 기법은 약간 변형된 응집 계층 클러스터링 기법을 사용해서 트리를 생성한 뒤, Reciprocity 성질을 만족시키는 Cloaking 영역을 생성한다. 제안 기법은 Reciprocity 성질을 만족시키며, Hilbert Cloak보다 작고 RC-AR과 비슷한 크기의 영역을 생성하며, 생성 속도는 Hilbert Cloak과 비슷하며 RC-AR보다는 훨씬 빠르다.
본 연구는 원격 탐사의 영상 처리에서 영상 분할의 상위 수준으로 응집 계층 clustering의 dendrogram을 통한 무감독 영상 분류를 제안한다. 제안된 알고리즘은 분광 영역에서 정의된 RAG (Regional Agency Graph)와 min-heap 자료 구조를 이용하여 MCSNP (Mutual Closest Spectral Neighbor Pair)의 집합을 검색하면서 합병을 수행하는 계층 clustering 방법이다. 계산 시간과 저장 기억의 사용에 대한 효율을 증가시키기 위해 분광적 인접성을 정의하는 분광 공간(spectral space)내의 다중 창을 사용하였고 RNV (Region Neighbor Vector)을 이용하여 합병에 의하여 변하는 RAG 갱신하였고 적정한 단계 수가 주어진다면 제안된 알고리즘은 집단 합병의 계층적 관계를 쉽게 해석 할 수 있는 dendrogram을 생성한다. 본 연구는 simulation 자료를 사용하여 광범위하게 제안된 알고리즘에 대한 평가 실험을 수행 하였으며 실험 결과는 알고리즘의 효율성을 입증하였다. 또한 한반도에서 관측된 방대한 크기의 QuickBird 영상의 적용 결과는 제안된 알고리즘이 무감독 영상 분류를 위한 강력한 수단임을 보여준다.
As a part of the era of human centric applications people started to care about their well being utilizing any possible mean. This paper proposes a framework for real time on-body sensor health-care system, addresses the current issues in such systems, and utilizes an enhanced online divisive agglomerative clustering algorithm (EODAC); an algorithm that builds a top-down tree-like structure of clusters that evolves with streaming data to rationally cluster on-body sensor data and give accurate diagnoses remotely, guaranteeing high performance, and scalability. Furthermore it does not depend on the number of data points.
본 연구는 두 공간정보의 대응 클래스 군집 쌍 탐색을 중심으로 의미론적 정합과정에서 발생하는 M:N 대응관계를 분석하는 방법을 제안한다. 객체의 공유 관계를 이용하여 클래스의 유사도를 측정하고 높은 유사도를 가지는 클래스들을 군집화함으로써 M:N 대응관계를 탐색하고자 한다. 클래스 사이의 유사도를 그래프 모형으로 표현하고 그래프 임베딩 기법을 적용하여 투영공간에서 클래스 사이의 거리가 클래스 중첩분석에 의한 국지적 유사도에 반비례하도록 개별 클래스들의 투영좌표를 계산하고 군집화를 수행함으로써 계층적 대응 군집 쌍을 탐색할 수 있다. 제안된 방법을 평가하기 위하여 경기도 수원시의 수치지형도와 연속지적도에 적용하여 수치지형도의 면 객체 레이어와 연속지적도의 필지 지목의 대응 군집 쌍을 탐색하였다. 탐색된 대응 클래스 쌍의 F-measure를 측정한 결과 약 0.80에서 0.35 사이의 다양한 값을 얻을 수 있었으며, 클래스 명칭과는 상이한 다양한 대응관계를 얻을 수 있었다.
본 연구에서는 국내 연안 해역 환경에서의 해상교통관제 서비스에 기여할 수 있는 항적 간 거리 척도를 개발하였다. 새로운 항적간 거리 척도는 전통적으로 위치 시계열 간의 유사도를 측정하는 데 활용되는 하우스도르프 거리(hausdorff distance)와 두 항적 간의 대지속력(Speed Over Ground, SOG)의 평균 간의 차이, 그리고 대지침로(Course Over Ground)의 분산 간의 차이를 가중합하여 설계되었다. 새로운 척도의 유효성을 검증하기 위하여 실제 AIS 항적 데이터와 병합 군집화 알고리즘을 활용한 기존 항적 간 거리 척도와의 비교 분석이 수행되었으며, 새로운 거리 척도를 활용한 항적 군집화 결과가 하우스도르프 거리(hausdorff distance), 그리고 다이내믹 타임 워핑 거리(Dynamic Time Warping distance) 등 기존 척도에 비해 항적 간 지리적 거리나 대지속도 및 대지침로 등 선박 거동 특성의 분포를 비슷하거나 그 이상의 수준으로 정교하게 반영하고 있음을 데이터 시각화로써 확인하였다. 정량적으로는 Davies-Bouldin 지표를 기준으로, 군집화 결과가 더욱 우수하거나 약간 낮은 수준을 기록한 한편, 거리 계산 효율성에서는 특히 우수함을 실증하였다.
클러스터링(Clustering)은 유사한 문서나 데이터를 묶어 군집화해주는 프로세스이다. 클러스터링은 문서들을 대표하는 개념별로 그룹화함으로써 사용자가 자신이 원하는 주제의 문서를 찾기 위해 모든 문서를 검사할 필요가 없도록 도와준다. 이를 위해 유사한 문서를 찾아 그룹화하고, 이 그룹의 대표되는 개념을 도출하여 표현해주는 기법이 요구된다. 이 상황에서 문제점으로 대두되는 것이 복합 개념(Complex Concept)의 탐지이다. 복합 개념은 서로 다른 개념의 여러 클러스터에 속하는 중복 개념이다. 기존의 클러스터링 방법으로는 문서를 클러스터링할 때 동일한 레벨에 있는 서로 다른 개념의 클러스터에 속하는 중복된 복합 개념의 클러스터를 찾아서 표현할 수가 없었고, 또한 복합 개념과 각 단순 개념(Simple Concept) 사이의 의미적 계층 관계를 제대로 검증하기가 어려웠다. 본 논문에서는 기존 클러스터링 방법의 문제점을 해결하여 복합 개념을 쉽게 찾아 표현하는 방법을 제안한다. 기존의 계층적 클러스터링 알고리즘을 변형하여 동일 레벨에서 중복을 허용하는 계층적 클러스터링(Hierarchical Overlapping Clustering, HOC) 알고리즘을 개발하였다. HOC 알고리즘은 문서를 클러스터링하여 그 결과를 트리가 아닌 개념 중복이 가능한 Lattice 계층 구조로 표현함으로써 이를 통해 여러 개념이 중복된 복합 개념을 탐지할 수 있었다. HOC 알고리즘을 이용해 생성된 각 클러스터의 개념이 제대로 된 의미적인 계층 관계로 표현되었는지는 특징 선택(Feature Selection) 방법을 적용하여 검증하였다.
Journal of Information Science Theory and Practice
/
제8권2호
/
pp.6-17
/
2020
Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.
Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of the images in the computer vision applications. It is common to generate superpixels of similar size and shape based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to control the sizes and shapes of generated superpixels, considering the contents of an image. The proposed method consists of two steps. The first step is to over-segment an image so that the boundary information of the image is well preserved. In the second step, generated superpixels are merged based on similarity to produce the target number of superpixels, where the shapes of superpixels are controlled by limiting the maximum size and the proposed roundness metric. Experimental results show that the proposed method preserves the boundaries of the objects in an image more accurately than the existing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.