• Title/Summary/Keyword: Agent-Task assignment problem

Search Result 7, Processing Time 0.021 seconds

Task Reallocation in Multi-agent Systems Based on Vickrey Auctioning (Vickrey 경매에 기초한 다중 에이전트 시스템에서의 작업 재할당)

  • Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.601-608
    • /
    • 2001
  • The automated assignment of multiple tasks to executing agents is a key problem in the area of multi-agent systems. In many domains, significant savings can be achieved by reallocating tasks among agents with different costs for handling tasks. The automation of task reallocation among self-interested agents requires that the individual agents use a common negotiation protocol that prescribes how they have to interact in order to come to an agreement on "who does what". In this paper, we introduce the multi-agent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest the Vickery auction as an interagent negotiation protocol for solving this problem. In general, auction-based protocols show several advantageous features: they are easily implementable, they enforce an efficient assignment process, and they guarantce an agreement even in scenarios in which the agents possess only very little domain-specific Knowledge. Furthermore Vickrey auctions have the additional advantage that each interested agent bids only once and that the dominant strategy is to bid one′s true valuation. In order to apply this market-based protocol into task reallocation among self-interested agents, we define the profit of each agent, the goal of negotiation, tasks to be traded out through auctions, the bidding strategy, and the sequence of auctions. Through several experiments with sample multi-agent TSPs, we show that the task allocation can improve monotonically at each step and then finally an optimal task allocation can be found with this protocol.

  • PDF

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

Sample Average Approximation Method for Task Assignment with Uncertainty (불확실성을 갖는 작업 할당 문제를 위한 표본 평균 근사법)

  • Gwang, Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The optimal assignment problem between agents and tasks is known as one of the representative problems of combinatorial optimization and an NP-hard problem. This paper covers multi agent-multi task assignment problems with uncertain completion probability. The completion probabilities are generally uncertain due to endogenous (agent or task) or exogenous factors in the system. Assignment decisions without considering uncertainty can be ineffective in a real situation that has volatility. To consider uncertain completion probability mathematically, a mathematical formulation with stochastic programming is illustrated. We also present an algorithm by using the sample average approximation method to solve the problem efficiently. The algorithm can obtain an assignment decision and the upper and lower bounds of the assignment problem. Through numerical experiments, we present the optimality gap and the variance of the gap to confirm the performances of the results. This shows the excellence and robustness of the assignment decisions obtained by the algorithm in the problem with uncertainty.

Multi Agents-Multi Tasks Assignment Problem using Hybrid Cross-Entropy Algorithm (혼합 교차-엔트로피 알고리즘을 활용한 다수 에이전트-다수 작업 할당 문제)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.37-45
    • /
    • 2022
  • In this paper, a multi agent-multi task assignment problem, which is a representative problem of combinatorial optimization, is presented. The objective of the problem is to determine the coordinated agent-task assignment that maximizes the sum of the achievement rates of each task. The achievement rate is represented as a concave down increasing function according to the number of agents assigned to the task. The problem is expressed as an NP-hard problem with a non-linear objective function. In this paper, to solve the assignment problem, we propose a hybrid cross-entropy algorithm as an effective and efficient solution methodology. In fact, the general cross-entropy algorithm might have drawbacks (e.g., slow update of parameters and premature convergence) according to problem situations. Compared to the general cross-entropy algorithm, the proposed method is designed to be less likely to have the two drawbacks. We show that the performances of the proposed methods are better than those of the general cross-entropy algorithm through numerical experiments.

Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition

  • Xue, Fei;Tang, Hengliang;Su, Qinghua;Li, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3566-3582
    • /
    • 2019
  • In intelligent warehouse picking system, the allocation of tasks has an important influence on the efficiency of the whole system because of the large number of robots and orders. The paper proposes a method to solve the task allocation problem that multi-robot task allocation problem is transformed into transportation problem to find a collision-free task allocation scheme and then improve the capability of task processing. The task time window and the power consumption of multi-robot (driving distance) are regarded as the utility function and the maximized utility function is the objective function. Then an integer programming formulation is constructed considering the number of task assignment on an agent according to their battery consumption restriction. The problem of task allocation is solved by table working method. Finally, simulation modeling of the methods based on table working method is carried out. Results show that the method has good performance and can improve the efficiency of the task execution.

An Effective Management Technique of Domain FA using Load Balancing in Mobile Computing Environment (부하 분산을 적용한 효율적인 Domain FA 관리 기법)

  • Kim Yong-Chul;Kim Yoon-jeong;Chung Min-Gyo;Lee Woong-Jae
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • Mobile computing environment makes it possible for computing activities to be maintained during movement even if a user changes its network point of attachment. Mobile IP is a standard protocol designed to be used in such mobile computing environment. However, Mobile IP has a drawback to incur a lot of handoff delays and waste network resources, since CoA(Care of Address) registration packets need to go through a HA(Home Agent) first whenever a mobile node moves. To solve this long-standing problem, this paper proposes a new scheme that, for infra-domain movement, efficiently performs local handoff without notifying the HA Specifically, based on the notion of load balance, the proposed scheme allows every FA(Foreign Agent) in a domain to become the root FA(also known as domain FA) dynamically, thus distributing the registration task into many other foreign agents. The dynamic root assignment through load balancing ultimately leads to fast network response due to less frequent transmission of registration packets.

  • PDF

Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing (부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Mun, Young-Song
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.85-92
    • /
    • 2010
  • A shallow semantic parsing system analyzes the relationship that a syntactic constituent of the sentence has with a predicate. It identifies semantic arguments representing agent, patient, instrument, etc. of the predicate. In this study, we propose a two-phase shallow semantic parsing model which consists of the identification phase and the classification phase. We first find the boundary of semantic arguments from partial syntactic parsing results, and then assign appropriate semantic roles to the identified semantic arguments. By taking the sequential two-phase approach, we can alleviate the unbalanced class distribution problem, and select the features appropriate for each task. Experiments show the relative contribution of each phase on the test data.