• Title/Summary/Keyword: Aged three-way catalyst

Search Result 4, Processing Time 0.02 seconds

Fuel Efficiency and Emission Characteristics on Aged Three-way Catalyst of LPG Vehicle (LPG 차량의 삼원촉매 노후화에 따른 연비 및 배출가스 특성)

  • Kang, Minkyung;Kwon, Seokjoo;Kim, Kiho;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.137-143
    • /
    • 2016
  • The LPG vehicles are being operated by commercial purposes generally such as taxis. Most of taxis have a long-mileage and a harsh driving pattern. These properties may accelerate aging of the three-way catalysts much faster than the passenger vehicles. Because of this background, it was analyzed the test result of fuel efficiency and emissions on the LPG-fueled light duty vehicle. It was selected for a LPG vehicle of ULEV level to measure the fuel efficiency and emissions of the aged three-way catalysts. And the aged three-way catalysts which was driven about 300,000km and 550,000km replaced on the test vehicle in consecutive order. As a result, The aged three-way catalysts generally had no effect on fuel efficiency result, and harmful exhaust emissions had been shown to increase in most of the test mode, even though it satisfied the regulation value on most test modes.

A Study on the Remanufacturing Effect of Aged Three-Way Catalysts (사용후 가솔린 자동차 삼원촉매의 재제조 효과 고찰)

  • Kwak, Seung-Min;Lim, Jong-Sun;Kim, Tae-Won;Park, Hae-Kyoung
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.430-436
    • /
    • 2009
  • Deactivated three-way catalysts which had been exposed to gasoline engine exhaust for a long time were remanufactured by ultra sonic cleaning with distilled water, sulfuric acid solution and impregnation with precious metals (Pt, Pd, Rh). The catalytic properties as well as conversion reactivity of CO, THC and NOx about fresh, aged and remanufactured catalysts were examined. Most of the pollutants deposited on the aged three-way catalysts were removed in the remanufacturing process of those catalysts. At the same time a little amount of precious metals like Pt and Pd were removed in the remanufacturing process. Under the experimental condition used in this study, in the case of the remanufactured catalysts with impregnation of precious metals, the catalytic activities were recovered to almost the same level, or higher level of that of the fresh catalyst.

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

Reaction Characteristics of Oxidation Catalysts for HCCI Engine (HCCI 엔진용 산화촉매의 반응특성)

  • Park, Sung-Yong;Kim, Hwa-Nam;Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • The Homogeneous Charge Compression Ignition (HCCI) engine concept allows for both NOx and particulate matter to be reduced simultaneously, and it is a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. The development of oxidation catalyst (OC) requires high conversion efficiency for CO and HC at low temperature. Conventional oxidation catalyst technologies may not be able to convert these emissions because of the saturation of active catalytic sites. The OC used in this study was 600 cpsi cordierite. Three kinds of OC with different amounts of Pt and Pd were used. The influence of the space velocity (SV), $H_2O$ and $O_2$ concentration was also studied. All types of OCs were found to have over 90% CO conversion efficiencies at $170^{\circ}C$. When in the presence of water vapor, CO conversion was increased, but $C_3H_8$ conversion was decreased. The performance of the OC was not influenced by initial the HC concentration. The 2Pt/Pd catalyst was better in terms of thermal aging than the Pt-only catalyst. The $LOT_{50}$ of both fresh and aged OC was increased with increasing SV and with the presence of $H_2O$.