• Title/Summary/Keyword: Agarose

Search Result 618, Processing Time 0.027 seconds

Development of Bioreactor by Rapid Prototyping Technology (쾌속 조형 기술을 이용한 바이오리액티의 개발)

  • Park, Jeong-Hun;Lee, Seung-Jae;Lee, In-Hwan;Cho, Dong-Woo;Rhie, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • It has been reported that mechanical stimulation takes a role in improving eel/ growth in skeletal system. Various research groups have been showed their own bioreactors which stimulate cell-seed three-dimensional scaffold. In this study, we hypothesized that the various conditions of mechanical stimulation would affect cell growth and proliferation. To prove our hypothesis, we designed a custom-made bioreactor capable of applying controlled compression to cell-encapsulated scaffolds. This device consisted of a circulation system and a compression system. Each parts of the bioreactor was fabricated using the rapid prototyping technology By using the rapid prototyping technology, we can modify and improve the bioreactor very rapidly For dynamic cell-culture, cell-encapsulated agarose gel was fabricated in 2% concentration. We performed dynamic cell-culture using this agarose gel and developed bioreactor in 3 days.

A Method for Direct Application of Human Plasmin on a Dithiothreitol-containing Agarose Stacking Gel System

  • Choi, Nack-Shick;Chung, Dong-Min;Yoon, Kab-Seog;Maeng, Pil-Jae;Kim, Seung-Ho
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.763-765
    • /
    • 2005
  • A new simplified procedure for identifying human plasmin was developed using a DTT copolymerized agarose stacking gel (ASG) system. Agarose (1%) was used for the stacking gel because DTT inhibits the polymerization of acrylamide. Human plasmin showed the lowest activity at pH 9.0. There was a similar catalytically active pattern observed under acidic conditions (pH 3.0) to that observed under alkaline conditions (pH 10.0 or 11.0). Using the ASG system, the primary structure of the heavy chain could be established at pH 3.0. This protein was found to consist of three fragments, 45 kDa, 23 kDa, and 13 kDa. These results showed that the heavy chain has a similar structure to the autolysed plasmin (Wu et al., 1987b) but there is a different start amino acid sequence of the N-termini.

Comparison of Soy and Pea Protein for Cultured Meat Scaffolds: Evaluating Gelation, Physical Properties, and Cell Adhesion

  • Do Hyun Kim;Seo Gu Han;Su Jin Lim;Seong Joon Hong;Hyuk Cheol Kwon;Hyun Su Jung;Sung Gu Han
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1108-1125
    • /
    • 2024
  • Cultured meat is under investigation as an environmentally sustainable substitute for conventional animal-derived meat. Employing a scaffolding technique is one approach to developing cultured meat products. The objective of this research was to compare soy and pea protein in the production of hydrogel scaffolds intended for cultured meat. We examined the gelation process, physical characteristics, and the ability of scaffolds to facilitate cell adhesion using mesenchymal stem cells derived from porcine adipose tissue (ADSCs). The combination of soy and pea proteins with agarose and agar powders was found to generate solid hydrogels with a porous structure. Soy protein-based scaffolds exhibited a higher water absorption rate, whereas scaffolds containing agarose had a higher compressive strength. Based on Fourier transform infrared spectroscopy analysis, the number of hydrophobic interactions increased between proteins and polysaccharides in the scaffolds containing pea proteins. All scaffolds were nontoxic toward ADSCs, and soy protein-based scaffolds displayed higher cell adhesion and proliferation properties. Overall, the soy protein-agarose scaffold was found to be optimal for cultured meat production.

Analysis of Genetic Relatedness by Random Amplified Polymorphic DNA (RAPD) in Pecan Taxa (RAPD를 이용한 Pecan 품종의 유전적 관계 분석)

  • 신동영;김회택;박종인;노일섭
    • Korean Journal of Plant Resources
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Pecan is deciduous tree and belongs to the Julandaceae family. Pecan is an economically important as a nut and timber crop. Heterozygosity is expected to be high for typically cross-pollinated. Yet little is known about the nature of genetic variation within this species. In addition, the pedigree of many pecan cultivars remains unknown or is questionable. In this study, the phylogenetic relationships between 22 pecan cultivars and its analyzed by RAPD (randomly amplified polymorphic DNA). PCR Amplification used 40 randomly selected oligoes as primers. Based on their genetic similarities derived from the RAPD data, the 22 pecan cultivars were classified into different five groups in agarose gel. The 22 pecan cultivars were classified into five sectional groups by UPGMA clustering analysis, too. C. flacra and Black walnut showed the 0.9 of similarity index and Farley, Pawnee showed the 0.85 of similarity index. The 22 pecan cultivars were classified into different five groups by analysis of the 4% polyacrylamide gel fraction. (Group I : 1, 2, 3, 4, 13, 16, 17, 20, 21 Group II : 14,18 GroupIII : 6,12 GroupIV : 5, 11, 15, 19, 22 CroupV : 7, 8, 9, 10) Group V show the 1.0 of similarity index and Farley, Sturya, Clarke, Pawnee show the 0.98 of similarity index and Kiowa, Schley show the 0.92 of similarity index. Results from this study indicated that RAPD can be used to establish the genetic relationships among the 22 pecan cultivars. Similarity coefficients generally agreed with what would be predicted in cultivars with known pedigrees, and we could accurately construct relationships among cultivars. In addition, we have shown that RAPD provides useful information on the origin of unknown cultivars.

  • PDF

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.

Functional Characterization of the Major Surface Protein of Treponema maltophilum in Human Gingival Fibroblasts

  • Lee, Sung-Hoon;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • Treponema maltophilum, a Group IV oral spirochete, is associated with periodontitis and endodontic infections. In this study we analyzed the functional role of the major surface protein of this organism (MspA) in human gingival fibroblasts (HGFs). The full-length gene encoding MspA was cloned and expressed in Escherichia coli by using the expression vector pQE-30. The recombinant protein (rMspA) was purified by affinity chromatography with nickel-nitrilotriacetic acid agarose and possible contamination of E. coli endotoxin in rMspA was removed by using polymyxin B-agarose. rMspA significantly induced the expression of pro inflammatory cytokines like IL-6 and IL-8 and intercellular adhesion molecule (ICAM)-1 in HGFs, when analyzed by reverse transcription-PCR, flow cytometry, and enzyme-linked immunosorbent assay. Our results indicate that MspA of T. maltophilum may play an important role in amplifying the local immune response by upregulating the expression of proinflammatory cytokines and ICAM-1.

Effects of Mechanical Stimulation for MC3T3-E1 Cells using Bioreactor (바이오리액터를 이용한 MC3T3-E1 세포의 기계적 자극에 대한 영향)

  • Lee, In-Hwan;Park, Jeong-Hun;Lee, Seung-Jae;Cho, Dong-Woo;Kang, Sang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1411-1414
    • /
    • 2008
  • It is reported that mechanical stimulation takes a role in improving cell growth in skeletal system. And various research groups have showed that developed bioreactor to stimulate cell-seeded and threedimensional scaffold. In this study, we designed a custom-made bioreactor capable of applying controlled compression to cell-seeded agarose gel. This device consisted of a circulation system and compression system. In circular system, culture chamber was sealed for prohibiting contamination and media solution was circulated by pump. In compression system, mechanical stimuli were controlled by LabVIEW software and mechanical transfer system. Cell-encapsulated agarose gels were cultured for up to 7 days. There were significant differences between the number of cells grown in dynamic cell culture and in static cell culture from 3 days to 7 days.

  • PDF