• Title/Summary/Keyword: Agarophyton vermiculophyllum

Search Result 2, Processing Time 0.015 seconds

A Study on Carpospore Release Induction Method of Agarophyton vermiculophyllum (홍조류 꼬시래기(Agarophyton vermiculophyllum)의 과포자방출 유도 방법에 대한 연구)

  • Choi, Han Gil
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • The aim of this study was to examine optimal induction method for carpospore release from Agarophyton vermiculophyllum cystocarps for seedling production. We tested the effects of environmental factors on carpospore release by using five different induction methods; spontaneous, desiccation, low temperature, desiccation+low temperature, and osmotic shock. Also, carpospores release was estimated at three temperatures (20, 25, and 30℃), and then under combinations of three day lengths (8, 12, and 16h) and two irradiances (30 and 60 μmol photons m-2 s-1), after pretreatment at desiccation+low temperature for 2 hr. The number of carpospores released was between 113 ~ 682 spores /cystocarp/day and it was maximal in the desiccation+low temperature treatment. Optimal environmental conditions for carpospore release of A. vermiculophyllum were 25℃, 16 h, and 60 μmol photons m-2 s-1. The present results suggest that massive carpospores for seedling production of A. vermiculophyllum could be obtained under a combination of 25℃, 16 h, and 60 μmol photons m-2 s-1 after pretreatment in the desiccation+low temperature.

Effects of Temperature and Light Intensity on the Early Growth of Tetrasporophytes and Gametophytes of Agarophyton vermiculophyllum (꼬시래기의 사분포자체와 배우체의 초기 생장에 대한 온도와 광도의 영향)

  • Lee, Sang Yong;Choi, Han Gil
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.133-139
    • /
    • 2020
  • The aim of this study is to examine the physiological characteristics of an agarophyte Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N. Norris et Fredericq in the early life stage of tetrasporophytes (2n) and gametophytes (n) to select appropriate seedlings for mariculture. Growth experiments were carried out at the combinations of four temperatures (20, 25, 30, and 35℃) and three light intensity levels (20, 60, and 100 µmol photons m-2 s-1) in the two ontogenetic stages: discoid holdfasts and erect sporelings. Holdfast areas and sporeling lengths of tetrasporophytes and gametophytes were estimated after 14 days in culture. Relative growth rates (RGRs) for holdfast areas were 7.08-28.38% day-1 for tetrasporophytes and 11.58-23.67% day-1 for gametophytes. At 35℃, holdfasts of tetrasporophytes survived with RGRs of 7.08-23.28% day-1 but those of gametophytes died. Maximal holdfast growth of tetrasporophytes occurred at 30℃ and 100 µmol photons m-2 s-1, which were different from gametophytes (25℃ and 100 µmol photons m-2 s-1). RGRs of tetrasporophytic sporelings were 2.93-11.11% day-1 and were between 0.78-10.82% day-1 for gametophytes. Maximal growth of A. vermiculophyllum sporelings occurred at 25℃ and 60 µmol photons m-2 s-1 for tetrasporophytes, and at 20℃ and 100 µmol photons m-2 s-1 for gametophytes. In conclusion, the present results indicate that carpospores could be used as resources of spore-seedling methods having genetic diversity for mass field cultivation because tetrasporophytes showed higher-temperature tolerance and faster-growing ability than gametophytes of A. vermiculophyllum in the discoid holdfast and sporeling stages.