• Title/Summary/Keyword: Agar-degrading activity

Search Result 57, Processing Time 0.047 seconds

Isolation of Agar Degrading Bacteria, Cytophaga sp. ACLJ-18 and Optimization of Enzyme Production (한천 분해균 Cytophage sp. ACLJ-18의 분리 및 효소 생산 조건 최적화)

  • 조순영;주동식
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.593-599
    • /
    • 1996
  • The strain which produces agar degrading enzyme was isolated from chiton(Liolophura japonica). The strain was identified as Cytophaga sp. through its morphological, physiological, and biological characteristics. For the production of agar degrading enzyme, 0.3% nutrient broth, 0.2% yeast extract and 0.5% agar was used as nitrogen and carbon source, respectively. The optimal initial pH, NaCl and temperature for the agar degrading activity of Cytophaga sp. were 7.0, 2.0% and $30{\pm}2^{\circ}C$, respectively. Agar degrading activity of enzyme obtained from Cytophaga sp. was increased until the incubation of 96hrs, but after 96hrs, the activity was decreased.

  • PDF

Characterization and Identification of an Agar-Degrading Motile Bacteria Strain (Agar를 분해하는 swarming 박테리아 균주의 특성과 동정)

  • Kang, Sung-Wan;Yoo, Ah-Young;Yu, Jong-Earn;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • A bacterial strain, CK214, exhibiting high motility on an LB agar (1.5%, w/v) surface was isolated from the environment. The formation of unusual agar shrinking around colonies on agar plates was observed. The strain grew on minimal media containing pure agar as a sole carbon source. The cell-free culture supernatant of CK214 generated a reduced form of sugar in the in vitro reaction with the use of pure agar as a substrate, suggesting the secretion of an agar-degrading enzyme. The CK214 strain showed swarming motility on the solid media containing a wide range of concentrations of agar (0.5, 1.0, 1.5, 2.0% w/v). Various tests, including Gram staining, API analysis, and phylogenetic analysis based on 16S rDNA sequences identified that the CK214 strain was a G(+) rod-shaped bacterium grouped in genus Paenibacillus. Electron microscopic analysis demonstrated that the P. CK214 strain is peritrichously flagellated. Through transposon random mutagenesis, several agar-degrading activity defective mutants (ADMs) were generated. These mutants will be used in the future experimentation for the study of the correlation between agar-degrading activity and motility.

Isolation of Simiduia sp. SH-2 and Characterization of Its β-Agarase (한천분해세균 Simiduia sp. SH-2 균주의 분리 및 β-agarase의 특성조사)

  • Lee, Dong-Geun;Kim, Geun-Dae;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.778-783
    • /
    • 2022
  • This study isolated a new agarase-producing bacterium and characterized its agarase. A new agar-degrading strain was isolated from the seashore of Namhae in Gyeongnam province, Korea, and was purely cultured using the Marine Agar 2216 media. The isolated bacterium was identified as Simiduia sp. SH-2 after 16S rRNA gene sequencing. The crude agarase was obtained from the culture medium of the Simiduia sp. SH-2 strain, and the agar-degrading activity was measured. The highest level of activity of the Simiduia sp. SH-2-derived agar-degrading enzyme was 625 U/l. Agar degradation activity was most significant at 40℃ and pH 7.0. Compared to the activity at 40℃, the relative activity was 31% at 20℃ and 71% at 30℃. Compared to the activity at pH 7.0, the relative activity was 94% and 89% at pH 6.0 and pH 8.0, respectively. Residual activity was greater than 96% after exposure to 20℃ and 30℃ for 2 hr and more than 49% after exposure to 40℃ for 2 hr. Simiduia sp. SH-2 was identified as a strain producing β-agarase that creates neoagarooligosaccharides, such as neoagarotetraose and neoagarohexaose. Therefore, the Simiduia sp. SH-2 strain and its β-agarase are expected to be useful functional material producers in the food, cosmetic, and pharmaceutical industries.

Isolation and Characterization of Marine Bacterial Strain SH-1 Producing Agar-Degrading Enzymes (한천 분해효소를 생산하는 해양 미생물 SH-1의 분리 및 특성 분석)

  • Lee, Jae-Hag;Lee, Soon-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.324-330
    • /
    • 2014
  • A marine bacterial strain producing agar-degrading enzymes was isolated from a mud flat in Jeboo-do (Korea) using a selective artificial sea water (ASW) agar plate containing agar as the sole carbon source. The isolate, designated as SH-1, was gram-negative, aerobic, and motile with single polar flagellum. 16S rRNA gene sequence similarity analysis showed the isolate SH-1 had the highest homology (96.5%) to marine bacterium Neiella marina J221. Cells could grow at $28-37^{\circ}C$ but not at $42^{\circ}C$, and the agarase activity of the cell culture supernatant was higher when grown at $28^{\circ}C$ than when grown at $37^{\circ}C$. Cells could grow when concentrations of 1-5% (w/v) NaCl were added to the growth media with the best growth observed at 3% NaCl, and the agardegrading enzyme activity of the cell culture supernatant was best when grown at 3% NaCl-containing growth media under the conditions we examined. The crude enzyme prepared from 48-h culture broth of strain SH-1 exhibited an optimum pH and temperature for agar-degrading activity at 7.0 and $40^{\circ}C$, respectively. Zymogram analysis of the crude supernatant and cell extract showed that strain SH-1 produced at least 3 agar-degrading enzymes with molecular weights of 15, 35, and 52 KD. Thinlayer chromatography (TLC) analysis also suggested that HS-1 produces ${\beta}$-agarase to degrade agarose to neoagarooligosaccharides.

Isolation and Identification of Marine Bacterium Cytophaga sp. AYK301 and Optimal Culture Conditions for the Production of Agarase (해양세균 Cytophaga sp. AYK301의 분리.동정 및 한천분해효소 생산을 위한 최적배양조건)

  • Lee, Won-Gyeong;Kim, Bong-Jo;Ha, Sun-Deuk;Gong, Jae-Yeol
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.572-577
    • /
    • 1999
  • A marine bacterium with highly effective agar degrading activity was ioslated from the southern sea of Korea (Chonnam, YoChon) and identified as Cytophaga sp. and named as Cytophaga sp. AYK301. This strain produced an extracellular agarase which had a high activity with agar. The optimum culture conditions for the production of agarase have been determined. For the increase of agarase productivity, 0.2% agar, 0.3% beef extract, and 0.05% NH$_4$NO$_3$ were used as carbon, organic and inorganic nitrogen source, respectively. The optimal initial pH, NaCl, culture time and temperature for the agar degrading activity were 7.5, 7.0%, 36 hr and $25^{\circ}C$, respectively. In the optimal conditions, the agarase production was increased up to more than 4.0 folds as compared to that by the basal medium.

  • PDF

Isolation of a Novel Tenacibaculum sp. JS-1 and Characterization of Its β-Agarase

  • Jin Sun Kim;Young Min Woo;Dong-Geun Lee;Andre Kim;Sang-Hyeon Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.135-140
    • /
    • 2024
  • This study reports the isolation of a bacterium capable of degrading agar and the characterization of its agarase. An agar-degrading marine bacterium JS-1 was isolated using Marine agar 2216 media from seawater collected from the seashore of Angolpo, Changwon, Gyeongnam Province, Republic of Korea. An agar-degrading bacterium was named as Tenacibaculum sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequence. The extracellular crude agarase was prepared from the culture media of Tenacibaculum sp. JS-1 and used for characterization. Relative activities at 20, 30, 40, 50, and 60℃ were 39, 73, 100, 74, and 53%, respectively. Relative activities at pH 5, 6, 7, and 8 were 46%, 67%, 100%, and 49%, respectively. Its extracellular agarase showed maximum activity (164 U/l) at pH 7.0 and 40℃ in a 20 mM GTA buffer. The residual activities after heat treatment at 20, 30, and 50℃ for 30 min were 84, 73, and 26% or more, respectively. After 2 h heat treatment at 20, 30, 40, and 50℃, the residual activities were 80, 64, 52 and 21%, respectively. Thin layer chromatography analysis suggested that Tenacibaculum sp. JS-1 produces extracellular β-agarases that hydrolyze agarose to produce neoagarooligosaccharides, including neoagarohexaose (12.3%), neoagarotetraose (65.1%), and neoagarobiose (22.6%) at 6 h. Tenacibaculum sp. JS-1 and its β-agarase could be valuable for producing neoagarooligosaccharides with a variety of functional properties. These properties include inhibiting bacterial growth, slowing down starch degradation, and whitening, which are of interest for pharmaceuticals, food, cosmeceuticals, and nutraceuticals.

Characterization and Purification of Agarase from Cytophaga sp. ACLJ-18 (한천 분해균(Cytohaga sp. ACLJ-18)이 생산하는 agarase의 정제 및 특성)

  • 주동식;송해미;이정석;조순영;이응호
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.320-324
    • /
    • 1998
  • Agar degrading enzyme-agarase-was purified from the culture fluid of Cytophaga so/ ACLJ-18, by acetone precipitation, DEAE-Cellulose, Sephadex G-100 and CM-Sephadex C25 column chromatographies. The molecular weight of purified agarase was estimated to be 24,700 dalton by SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for agarase activity were 7.0 and 40$^{\circ}C$, respectively. this agarase was stable in the pH range of 6.5 - 8.0 and 40$^{\circ}C$, and required 0.35M NaCl for optimum activity. And this agarase was inhibited by metal ions such as Ba2+, Cu2+, Co2+, Mn2+, Hg2+, Zn2+, and showed specificity on agar.

  • PDF

Purification and Properties of a Novel Extracellular Agarase from Marine Bacterium, Sphingomonas paucimobilis AS-1 (해양미생물 Sphingomonas paucimobilis AS-1이 생산하는 새로운 extracelluar agarase의 정제 및 특성)

  • Jung, Il-Sun;Kim, Yu-Jung;Song, Hyo-Ju;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.103-108
    • /
    • 2008
  • An agar-degrading marine bacterium, strain AS-1 was isolated from the seawater. The strain AS-1 was identified as Sphingomonas paucimobilis (90% probability) by VITEK. The optimum medium for agarase activity of the isolated strain was determined to be marine medium, marine broth 2216 containing 0.1% agar as carbon source. An extracellular agarase was purified 104-fold from the culture supernatant by ammonium sulfate precipitation, ion exchange chromatography and gel filtration methods. The molecular weight of the purified enzyme was estimated to be 80 kDa by SDS-PAGE. The optimum pH and temperature for activity were 7.0 and $40^{\circ}C$, respectively. Antioxidative activity of the strain AS- was 72% in the supernatant cultured for 12 h. The culture supernatant of the strain AS-1 showed antibacterial activity against bacteria causing putrefaction and food poisoning such as Escherichia coli, Staphylococcus aureus and Proteus vulgaris. However, the cell growth of the lactic aicd forming strain, Lactobacillus plantarium was promoted by the treatment of 10% culture supernatant of an agar-degrading strain.

Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase (신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사)

  • Lee, Chang-Eun;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • In this study, we isolated a new agar-degrading marine bacterium and characterized its agarase. An agardegrading marine bacterium SH-1 was isolated from seawater, collected from the seashore of Namhae in Gyeongnam province, Korea, and cultured in marine agar 2216 media. It was identified as Maribacter. sp. SH-1 by phylogenetic analyses, based on 16S rRNA gene sequence. The extracellular agarase was extracted from culture media of Maribacter sp. SH-1 and characterized. Its relative activities were 56, 62, 94, 100, and 8% at 20, 30, 40, 50, and 60℃, respectively, whereas 15, 100, 60, and 21% relative activities were observed at pH 5, 6, 7, and 8, respectively. Its extracellular agarase exhibited maximum activity (231 units/l) at pH 6.0 and 50℃, in 20 mM Tris-HCl buffer. Therefore, this agarase would be applicable as it showed the maximum activity at the temperature at which the agar is in a sol state. Furthermore, the agarase activities remained over 90% at 20, 30, and 40℃ after 0.5 h exposure at these temperatures. Thin layer chromatography analysis suggested that Maribacter sp. SH-1 produces extracellular β-agarase, as it hydrolyzes agarose to produce neoagarooligosaccharides, such as neoagarohexaose (34.8%), neoagarotetraose (52.2%), and neoagarobiose (13.0%). Maribacter sp. SH-1 and its β-agarase would be useful for the production of neoagarooligosaccharides, which shows functional properties, like skin moisturizing, skin whitening, inhibition of bacterial growth, and delay in starch degradation.

Screening of Organo Phosphorus Insecticide Fenitrothion-Degrading Microorganisms (유기인계 살충제 fenitrothion 분해미생물 탐색)

  • Choi, Hyuek;Kim, Bok-Jin;Bae, Do-Yong;Lee, Young-Deuk;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 1998
  • Fenitrothion-degrading microorganisms were isolated from 124 sampling sites of paddy, upland, forest and polluted soil, and wastewater. A total of 1,071 strains were isolated from each selective medium supplemented with 50mg/l of fenitrothion - nutrient agar (NA) 601, potato dextrose agar (PDA) 201, Actinomycetes isolation agar (AIA) 168 and basal salt medium (BSM) 101, respectively. Twenty-eight effective strains of them, which showed more than 80% degradation of fenitrothion by the gasliquid chromatography(GLC) analysis. were successfully selected from each liquid culture supplemented with 50mg/l of fenitrothion - NB 12(upland soil 3, paddy soil 3, forest soil 2, polluted soil 4), PDB 8(upland soil 1, paddy soil 2, forest soil 2, polluted soil 3) and PSB 8(upland soil 1, forest soil 1, polluted soil 6), respectively. Four strains - NPal, NFol, PFol and BPol, which have the most powerful degradation activity were finally selected among 28 fenitrothion-degrading microorganisms based on the degradation rate at the concentration of 100mg/l fenitrothion in enrichment media.

  • PDF