• Title/Summary/Keyword: Ag thin film

Search Result 377, Processing Time 0.027 seconds

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.

Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative

  • Kim, Ji-Hoon;Song, Chang Eun;Kang, In-Nam;Shin, Won Suk;Zhang, Zhi-Guo;Li, Yongfang;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1356-1364
    • /
    • 2014
  • A new conjugated copolymer, poly{4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-alt-4,7- bis(5-thiophen-2-yl)-5,6-difluoro-2-(heptadecan-9-yl)-2H-benzo[d][1,2,3]triazole} (PTIPSBDT-DFDTBTz), is synthesized by Stille coupling polycondensation. The synthesized polymer has a band gap energy of 1.9 eV, and it absorbs light in the range 300-610 nm. The hole mobility of a solution-processed organic thin-film transistor fabricated using PTIPSBDT-DFDTBTz is $3.8{\times}10^{-3}cm^2V^{-1}s^{-1}$. Bulk heterojunction photovoltaic cells are fabricated, with a conventional device structure of ITO/PEDOT:PSS/polymer:$PC_{71}BM$/Ca/Al ($PC_{71}BM$ = [6,6]-phenyl-$C_{71}$-butyric acid methyl ester); the device shows a power conversion efficiency (PCE) of 2.86% with an open-circuit voltage ($V_{oc}$) of 0.85 V, a short-circuit current density ($J_{sc}$) of 7.60 mA $cm^{-2}$, and a fill factor (FF) of 0.44. Inverted photovoltaic cells with the structure ITO/ethoxylated polyethlyenimine/ polymer:$PC_{71}BM/MoO_3$/Ag are also fabricated; the device exhibits a maximum PCE of 2.92%, with a $V_{oc}$ of 0.89 V, a $J_{sc}$ of 6.81 mA $cm^{-2}$, and an FF of 0.48.

Optical Characteristics of Plamonic Waveguide Using Tapered Structure (테이퍼 구조를 이용한 플라즈모닉 도파로의 광학 특성)

  • Kim, Doo Gun;Kim, Hong-Seung;Oh, Geum-Yoon;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Tae-Un;Kim, Hwe Jong;Ma, Ping;Hafner, Christian;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • We have investigated the optical properties of plamonic waveguide with tapered structure based on InP material for photonic integrated circuit(PIC). The proposed plasmonic waveguide is covered with the Ag thin film to generate the plasmonic wave on metallic interface. The optical characteristics of plasmonic waveguide were calculated using the three-dimensional finite-difference time-domain method. The plasmonic waveguide was fabricated with the lengths of 2 to $10{\mu}m$ and the widths of 400 to 700 nm, respectively. The plasmonic mode and optical loss were measured. The optimum plasmonic length is $10{\mu}m$ and widths are 600 and 700 nm in the fabricated waveguide. This plasmonic waveguide can be directly integrated with other conventional optical devices and can be essential building blocks of PIC.

Effects of Sodium and Gallium on Characteristics of CIGS Thin Films and CdS/CIGS Solar Cells by Co-evaporation Method (Na확산과 Ga첨가에 따른 동시진공증발법으로 제조된 CIGS 박막과 CdS/CIGS 태양전지의 특성)

  • Kwon, S.H.;Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Lee, D.Y.;Ahn, B.T.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.43-54
    • /
    • 2000
  • We prepared and characterized $Cu(In_{1-x}Ga_x)Se_2$(CIGS) films using a elemental co-evaporation method for absorbing layer of high efficiency thin film solar cells. The CIGS films deposited on a soda-lime glass exhibited low resistivity because of higher carrier concentration. Na was accumulated at the CIGS surface and the 0 and Se were also accumulated at the surface, suggesting that oxidation is a driving force of Na accumulation. The structure of CIGS film was modified or a secondary phase was formed in the Cu-poor CIGS bulk films probably due to the incorporation of Na into Cu vacancy sites. As the Ga/(In+Ga) ratio increased, the diffraction peaks of $Cu(In_{1-x}Ga_x)Se_2$ films were shifted to larger angle and splitted, and the grain size of $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films became smaller. All $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films showed the p-type conductivity regardless of the Ga/(In+Ga) ratio. Ag/n-ZnO/i-ZnO/CdS/$Cu_{0.91}(In_{0.7}Ga_{0.3})Se_2$/Mo solar cells were fabricated. The currently best efficiency in this study was 14.48% for $0.18cm^2$ area ($V_{oc}=581.5mV,\;J_{sc}=34.88mA$, F.F=0.714).

  • PDF

Multi Layer Thin Film Deposition Using Rotatable Hexagonal Gun by Sputtering for the Insulating Glass

  • Park, Se-Yeon;Lee, Jong-Ho;Choi, Bum-Ho;Han, Young-Ki;Lee, Kee-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.314-315
    • /
    • 2012
  • 최근들어 반도체 및 디스플레이 소자의 구조가 복잡해짐에 따라 다층 박막 증착에 대한 중요성이 날로 증가하고 있다. 본 연구에서는 다층 박막을 효율적으로 증착하기 위해 회전이 가능한 육각건을 개발하였고, 이를 이용하여 에너지 절약형 단열 유리 증착 공정을 구현 하였다. 개발된 회전형 육각건은 기존 플래너형 스퍼터링 건의 확장형으로서 최대 6개의 물질을 하나의 챔버에서 증착이 가능하도록 구성되었다. 기존 공정의 경우 서로 다른 물질 증착을 위해서는 각각의 챔버가 필요한 반면, 회전형 육각건을 이용할 경우 하나의 챔버에서 공정을 진행할 수 있어 원가 절감이 가능하다. Fig. 1은 개발된 회전형 육각건의 모식도로서, 스퍼터링 타겟이 장착 가능한 건과, 회전부로 구성되어 있다. 이를 이용하여 투명전극-금속-투명전극-금속-절연체로 구성되어 있는 에너지 절약형 단열 유리용 다층 박막 증착 공정을 개발하였다. 이때 알루미늄이 도핑된 ZnO (AZO)는 RF 마그네트론 스퍼터로, 금속 박막은 DC 스퍼터, $SiO_2$ 및 SiN과 같은 절연 박막은 $O_2$$N_2$ 분위기에서 반응성 RF 스퍼터로 각각 증착하였다. Base pressure는 $10^{-7}$ torr였으며, 증착 시 공정 압력은 1~3 mTorr로 조정하였다. 증착 균일도 향상을 위해 20 rpm의 속도로 기판을 회전시켰다. Fig. 2(a)는 ZnO-Ag-ZnO 구조로 이루어진 다층 박막의 단면을 관찰한 투과전자 현미경 사진으로 각 층간의 계면이 뚜렷하게 나타남을 확인할 수 있으며, 각 층간의 intermixing 현상이 발생하지 않음을 확인 가능하다. 이를 보완하기 위해 Fig. 2(b)에서 보는 바와 같이 XPS를 이용하여 depth profile을 측정하였다. 각 층에서 서로 다른 물질이 발견되는 현상, 즉 교차 오염이 발생함에 따라 나타나는 intermixing 없이 거의 순수한 형태의 ZnO, Ag 박막 성분이 검출되었다. 이는 6개의 서로 다른 물질이 장착된 회전형 육각건을 이용하여 고 품질의 다층 박막 증착이 가능함을 제시하는 결과이다. 증착된 다층 박막의 균일도는 3.8%, 가시광선 영역에서 80% 이상의 투과도, 면저항 값은 3 ${\Omega}/{\Box}$ 이하를 보임으로서 에너지 절약형 단열 유리로서의 사양을 만족시키는 결과를 제시하였다.

  • PDF

Anodic Stripping Voltammetric Determinations of Zinc, Cadmium, Lead and Copper in Freshwater and Sediment (담수 및 퇴적물에 함유된 아연, 카드뮴, 납 및 구리의 산화전극 벗김 전압전류법 정량)

  • Hahn, Young Hee;Yoo, Jeong Yeon
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.4
    • /
    • pp.180-185
    • /
    • 1997
  • Zinc, cadmium, lead and copper were simultaneously determined by depositing metals at - 1.200 V vs. a Ag/AgCl(sat. KCl) reference electrode for 150 seconds on a hanging mercury drop electrode(HMDE) or a thin mercury film electrode(TMFE), followed by scanning towards anodic direction using differential pulse voltammetric(DPASV) and square wave voltammetric(SWASV) techniques. The linear calibration curves were obtained for four metal ions simultaneously determined by DPASV with a HMDE in the concentration range between 20 and 100 ppb. However, the linear calibration plots were obtained only for $Cd^{2+}$ and $Pb^{2+}$ in the simultaneous determinations with a TMFE in the concentration range up to 100 ppb using DPASV and up to 10 ppb using SWASV. DPASV with a TMFE was about 15 times more sensitive than DPASV with a HMDE for simultaneous determinations of $Cd^{2+}$ and $Pb^{2+}$. SWASV was about 5 times more sensitive than DPASV at a TMFE. Concentrations of zinc in seven different sediment samples determined by DPASV with a HMDE and inductively coupled plasma-mass spectrometry were compared, resulting with an excellent correlation coefficient of 0.9993 and with no significant difference between two methods after t-test.

  • PDF

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF