• Title/Summary/Keyword: Ag particles

Search Result 272, Processing Time 0.023 seconds

Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method (화학적 환원법으로 제작한 은나노유체의 흡광계수)

  • Lee, S.H.;Kim, H.J.;Choi, T.J.;Kim, S.B.;Kang, Y.J.;Kim, D.J.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • In this study, we prepare the Ag nanofluids synthesized by the chemical reduction method and measure the extinction coefficient of those nanofluids at a wavelength of 632.8 nm. The Ag nanofluids are synthesized by the chemical reduction method using silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in water and ethylene glycol (EG). For stable dispersion of Ag particles in the base liquids, polyvinyl pyrrolidone (PVP) is added as a surfactant. The extinction coefficient of manufactured Ag nanofluids is measured by an in-house developed measurement system at the wavelength of 632.8 nm. The results show that the extinction coefficient of water-based and EG-based Ag nanofluids is linearly increased with respect to the particle loadings. Moreover, it is shown that the extinction coefficient of EG-based Ag nanofludis is higher than that of water-based Ag nanofluids. Finally we compare the experimental results with both the Maxwell-Garnett model and Rayleigh scattering approximation model, and they demonstrate that the Rayleigh scattering approximation model is reasonably predict the extinction coefficient of Ag nanofluids using hydraulic diameter of silver nanoparticle.

A Study of Strength, Fracture Toughness and Superconducting Properties of YBCO-Ag Composite Superconductors (YBCO-Ag 복합초전도체의 강도, 파괴인성 및 초전도성질에 관한 연구)

  • Joo, Jin-Ho;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.394-398
    • /
    • 1998
  • We have studied the effect of Ag additions on the microstructure and the related mechanical and supercon¬ducting properties of $ YBa_{2}$$Cu_{3}$$O_{7-\delta}$ (YBCO) superconductors. A 5-15 vol.% of Ag was added to YBCO in the forms of Ag and $AgNO_{3}$, powder and the resultant microstructural evolution was evaluated. It was observed that the strength and fracture toughness of YBCO increased with increasing Ag content. These improvements in strength and fracture toughness are believed to be due to the strengthening mechanisms caused by the presence of Ag. In addition, YBCO-Ag composite superconductors showed higher values of strength and fracture toughness when Ag was added in the form of AgNO, than those of which was added Ag. The higher mechanical properties of YBCO- Ag resulting from $AgNO_{3}$, addition are probably due to the microstructure of more finely and uniformly distributed Ag particles. The addition of Ag also showed slightly improved critical current density of YBCO superconductors.

  • PDF

Effect of Nano Particles on Fertilized Egg of Crossostrea gigas (참굴(Crassostrea gigas) 수정란에 미치는 나노입자의 영향)

  • Lee, Byeong-Woo;Park, Chan-Il;Choi, Kwang-Soo;Kim, Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • A Nano particle is a small particle with at least one dimension less than 100 nm Nanoparticle is currently used in an area cf intense scientific research, due to a wide variety cf potential applications in biomedical, optical, and electronic fields. In order to know the biological effect of the nine Nano particles on fertilized egg of Crassostrea gigas experiments were performed Development rates of control (free Nano particles) C. gigas to a particular larval stage (D-shape) was 78%. Development rate of C gigas to a parcicular larval stage (D-shape) after 24 hours exposure to 0.05ppm of AGZ020, Nano silver, P-25 and SnO were 22%, 52%, 58% and 76%, respectively. However, all fertilized eggs were destructed within 8 hours afters exposure to 20ppm of respective particles. On the other hand, All fertilized eggs were not affected after 24 hours respective exposure to 0.05ppm of In, Sb, Sn, Zn, and Ag-$TiO_2$ particles. However, development rates of C. gigas after 24 hours exposure to 20ppm of In, Sb, Sn, Zn, Ag-$TiO_2$ were 57%, 60%, 50%, 65%, and 64% respectively.

  • PDF

Synthesis of Composite Particles with Fe3O4 core and Ag Shell for the Development of Fingerprints

  • Zhang, Ling-Yan;Chu, Ting
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1457-1461
    • /
    • 2013
  • The $Fe_3O_4$-core and Ag-shell ($Fe_3O_4@Ag$ nanoeggs) were prepared through the encapsulation of 3-aminopropyltriethoxysilane-coated magnetite nanoparticle in nano-Ag shell by a simple chemically controlled procedure. The $Fe_3O_4@Ag$ nanoeggs were characterized by scanning electron microscopy, transmission electron microscopy, UV-vis spectrum and superconducting quantum interference device magnetometer, respectively. A detailed analysis is provided of how the hydrolysis and condensation of 3-aminopropyltriethoxysilane and the pH value are vital in fabricating the $Fe_3O_4@Ag$ nanoeggs. The prepared $Fe_3O_4@Ag$ nanoeggs possessed uniform size, improved monodispersity, stability against aggregation and high magnetization, which were utilized for the detection of latent fingerprints deposited onto different surfaces. The experimental results showed that the latent fingerprints developed with the $Fe_3O_4@Ag$ nanoeggs powders exhibited excellent ridge details with minimal background staining.

Ag and Cu Precipitation in Multi-Layer Chip Inductors Prepared with V2O5 Doped NiCuZn Ferrites (V2O5 도핑된 NiCuZn 페라이트로 제조된 칩인덕터에서의 Ag/cu 석출)

  • Je, Hae-June;Kim, Byung-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.503-508
    • /
    • 2003
  • The purpose of this study is to investigate the effect of $V_2$$O_{5}$ addition on the Ag and Cu precipitation in the NiCuZn ferrite layers of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2$$O_{5}$ -doped ferrite pastes. With increasing the $V_2$$O_{5}$ content and sintering temperature, Ag and Cu oxide coprecipitated more and more at the polished surface of ferrite layers during re-annealing at $840^{\circ}C$. It was thought that during the sintering process, V dissolved in the NiCuZn ferrite lattice and the Ag-Cu liquid phase of low melting point was formed in the ferrite layers due to the Cu segregation from the ferrite lattice and Ag diffusion from the internal electrode. During re-annealing at $840^{\circ}C$, the Ag-Cu liquid phase came out the polished surface of ferrite layers, and was decomposed into the isolated Ag particles and the Cu oxide phase during the cooling process.

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

Effects of the Particle Size and Shape of Silver Nanoparticles on Optical and Electrical Characteristics of the Transparent Conductive Film with a Self-assembled Network Structure (은 나노입자의 크기 및 형태가 자가조립 망상구조를 갖는 투명전도성 필름의 광학 및 전기 특성에 미치는 영향)

  • Shin, Yong-Woo;Kim, Kyu-Byung;Noh, Su-Jin;Soh, Soon-Young
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.162-167
    • /
    • 2018
  • The effect of the average particle size and shape of silver nanoparticles for the transparent conductive film (TCF) was studied. Optical and electrical properties of silver conductive lines coated on the polyethylene terephthalate (PET) film was also measured. Silver nanoparticles produced by Ag-CM, Ag-ME, Ag-EE methods showed an excellent conductivity compared to those produced by Ag-EB, Ag-CR and Ag-PL methods, but a little difference in the transparency. In the case of the former three silver nanoparticles, the average particle size was about 80 nm or less and the size was uniform. For the latter case, the severe agglomeration phenomena of particles was observed and the average particle size was 100 nm or more. This result was consistent with the result of the uniformity of the pattern shape and thickness on conductive line patterns observed by SEM. Therefore, it was confirmed that the electrical characteristics could be obtained when the average particle size of silver nanoparticles is smaller and the uniformity of the particles is maintained.

Fabrication of Nanocomposite Powders by Sonochemical Method

  • Hayashi, Yamato;Sekino, Tohru;Niihara, Koichi
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.207-209
    • /
    • 2001
  • Nano particles have recently been a major research interest, motivated by their unusual physical and chemical properties. Such particles can be synthesized using physical and chemical methods. The physical methods need expensive installation like vacuum induction furnace, whereas in chemical methods the process in generally very simple and low cost. In this study, simple and new fabrication process by using ultrasound was investigated to prepare the nano-sized metal particles on various powders at room temperature.

  • PDF