• Title/Summary/Keyword: Ag particles

Search Result 269, Processing Time 0.028 seconds

Changes in Facilitated Transport Behavior of Silver Polymer Electrolytes by UV Irradiation

  • Jongok Won;Yosang Yoon;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.80-84
    • /
    • 2002
  • Silver species other than the silver ion were formed by UV irradiation on polymer electrolyte membranes containing silver salts and their effect on complexation behavior between the silver and olefin was investigated through the separation performance of olefin/paraffin mixtures. The ideal propylene/propane separation factor reached 350 and the separation coefficient was ca.15 due to the high loading amount of silver ions into poly(2-ethyl-2-oxazoline) (POZ) without UV irradiation. On UV irradiation either in air or under nitrogen, the silver-POZ membranes became yellow-brown initially due to the formation of colloidal silver particles, and finally black and metal-like luster. Even when Ag$^{+}$ was converted, to some extent, to Ag$^{\circ}$ by UV irradiation in air at the early stage, the separation coefficient of olefin/paraffin mixtures was maintained. This suggests that silver species other than the silver ion is active for olefin carrier for facilitated transport. Meanwhile the steady decrease of the separation coefficient was observed in the silver/POZ membranes irradiated under $N_2$. It is suggested that the reduction of silver ions in POZ goes through a different photoreduction mechanism with UV irradiation depending on the environment.t.

Electrodeposition of Gold on Fluorine-Doped Tin Oxide: Characterization and Application for Catalytic Oxidation of Nitrite

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Lopa, Nasrin Siraj;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2072-2076
    • /
    • 2014
  • Sub-micrometer size gold particles were electrodeposited on a transparent fluorine-doped tin oxide (FTO) from acetonitrile solution containing $AuCl_4{^-}$ and tetramethylammonium tetraflouroborate (TMATFB) for detecting $NO_2{^-}$. A series of two-electron ($2e^-$) and one-electron ($1e^-$) reductions of the $AuCl_4{^-}-AuCl_2{^-}-Au$ redox systems were observed at FTO and a highly stable and homogeneous distribution of Au on FTO (Au/FTO) was obtained by stepping the potential from 0 to -0.55 V (vs. Ag/$Ag^+$). The Au/FTO electrode exhibited sufficiently high catalytic activity toward the oxidation of $NO_2{^-}$ with a detection limit (S/N = 3) and sensitivity of 2.95 ${\mu}M$ and 223.4 ${\mu}A{\cdot}cm^{-2}{\cdot}mM^{-1}$, respectively, under optimal conditions. It exhibited an interference-free signal for $NO_2{^-}$ detection with excellent recoveries from real samples.

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.

Non-destructive Analysis of Snail Trail on Silver Grid Line in PV Module (비파괴 분석법을 적용한 결정질 태양전지 모듈의 Snail trail 현상 연구)

  • Kim, Dajung;Kim, Namsu;Hwang, Kyung-Jun;Lee, Ju Ho;Jeong, Sinyoung;Jeong, Dae Hong
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • In recent years, discoloration defects, called as snail trail, have been observed at many crystalline photovoltaic modules after a period of time ranging from several months to several years after initial installation. It has been reported that this phenomenon doesn't impact on the performance of photovoltaic modules, but it can be detected through simple visual inspection. The origin and detailed mechanism for the formation have not been identified. In this study, non-destructive analysis by Raman spectroscopy has been carried out to investigate the origin of this phenomenon. In parallel, destructive analysis by scanning electron microscopt and transmission electron microscopy was also performed in order to confirm the results from non-destructive method. Through the extensive analysis, it was found that the main cause for discoloration is the formations of $Ag_2CO_3$ and $AgC_2H_3O_2$. Detailed mechanism for the formation of these particles was indentified through systematic studies.

Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints (볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

Effects of Silver Treatment and the Physical and Chemical Properties of Spherical Activated Carbon

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Kan;Meng, Ze-Da;Zhang, Feng-Jun
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.569-575
    • /
    • 2009
  • In this study, the effects of silver treatment and activation on the physical and chemical properties of spherical activated carbon (SAC) were studied. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity, pressure drop and antibacterial effects. BET surface areas of SACs decreased with an increase of the amount of PR before and after activation, and the BET surface areas of SACs were found to be about 2-3 times the size of those before activation. The XRD patterns showed their existing state as stable Ag crystals and carbon structure. The Ag particles are seaweedlike and uniform, being approximately 5-10 μm in size deposited on the surface of activated carbon. All of the samples had much more iodine adsorption capability after activation than before activation. The strength values of SACs increased with an increase of the amount of PR, and there was a smaller drop in the strength values of SACs with silver treatment than with non-silver treatment after activation. The Ag-SAC composites showed strong antibacterial activity against Escherichia coli (E. Coli).

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung;Zhu, Tongren;Jeon, Chan-Hoo;Lawler, Desmond F.
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

Antimicrobial Activity of Fabrics Treated with Colloidal Silver Solutions Made by Electrolysis and Reduction (제조 방법이 다른 은 콜로이드 용액 처리 직물의 항균효과)

  • Chung Haewon;Kim Boyeon;Yang Heeju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.6
    • /
    • pp.805-813
    • /
    • 2005
  • In recent years, greatly increased incidences of diseases made people more concerned about their hygienic environment. Since clothes are the closest environment to man, many methods have beef proposed to impart antimicrobial properties to the textiles. Benefits associated with incorporating antimicrobial properties in textiles include protection to the wearer from microbiological attack, and prevention of odor from perspiration. Silver has been known to kill 650 different disease organisms, however, nano-sized silver particles are known as skin friendly and does not cause skin irritation. In this study, we have examined the antimicrobial effects of cotton or polyester fabric, on which nano-sized silver particles were treated. Colloidal silver solution made by electrolysis of $99.9\%$ silver stick was more effective than that by reduction of $AgNO_3.\;0.7\%$ concentration of colloidal silver solution by electrolysis is helpful to give reduction of $99.9\%$ S. aureus and K. pneumoniae on a cotton fabric without the decrease of whiteness. Since the structures of fiber and fabric effect on their antimicrobial property, PET filament fabric didn't have sufficient antimicrobial properly. The fabrics treated with up to $5\%$ colloidal silver solution didn't have the properly of antistatic and electromagnetic shield.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source part two: Study of H3BO3 and B-DTPA under neutron irradiation

  • Ezddin Hutli;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2419-2431
    • /
    • 2023
  • Experiments related to Boron Neutron Capture Therapy (BNCT) accomplished at the Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (TUB) are presented. Relevant investigations are required before designing BNCT for vivo applications. Samples of relevant boron compounds (H3BO3, BDTPA) usually employed in BNCT were investigated with neutron beam. Channel #5 in the research reactor (100 kW) of INT-TUB provides the neutron beam. Boron samples are mounted on a carrier for neutron irradiation. The particle attenuation of several carrier materials was investigated, and the one with the lowest attenuation was selected. The effects of boron compound type, mass, and compound phase state were also investigated. To detect the emitted charged particles, a traditional ZnS(Ag) detector was employed. The neutron beam's interaction with the detector-detecting layer is investigated. Graphite (as a moderator) was employed to change the neutron beam's characteristics. The fast neutron beam was also thermalized by placing a portable fast neutron source in a paraffin container and irradiating the H3BO3. The obtained results suggest that the direct measurement approach appears to be insufficiently sensitive for determining the radiation dose committed by the Alpha particles from the 10B (n,α) reaction. As a result, a new approach must be used.