• Title/Summary/Keyword: Ag Nanoparticles

Search Result 349, Processing Time 0.023 seconds

Synthesis of Dodecanethiol-Capped Nanoparticles Using Ionic Liquids (이온성 액체를 이용한 dodecanethiol로 안정화된 금속 나노입자 합성)

  • Lee, Young-Eun;Lee, Seong-Yun;You, Seong-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.795-801
    • /
    • 2012
  • Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Thiol ligand have been used as stabilizers of metal nanoparticles since Brust et al. They reported the preparation method of ligand capped metal nanoparticles by protecting the nanoparticles with a self-assembled monolayer of dodecanethiolate. In this method, volatile organic compounds (VOCs) were used as sovents. This study was carried out to replace these VOCs with room temperature ionic liquids (RTILs). We used two type of ILs to prepare metal nanoparticles. One is a hydrophobic IL, [BMIM][[$PF_6$] (1-Butyl-3-methylimidazolium hexafluorophosphate) purchased from IL maker, C-Tri from Korea and the other one is a hydrophilic one, [BMIM][Cl] (1-Buthy-3-methylimdazolium chloride) sinthesized by us. In the case of preparing Ag and Au nanoparticles using [BMIM][Cl], we didn't use phase transition reagents and ethanol because it has hydrophilic property and preparing Au, Ag nanoparticles using [BMIM][[$PF_6$] the method is as same as Brust et al.'s except using [BMIM][[$PF_6$] instead of organic solvent because it has hydrophobic property. FT-IR and UV-vis, TEM, TGA analysis have been used in an attempt to determine the particle size and verify functional groups. The particle size obtained from TEM was very similar to those obtained by Brust et al. This is a clear example of ligand capped metal nanoparticles prepared using ionic liquids. And the experimental result demonstrated ionic liquids can act as a highly effective medium for the preparation and stabilization of gold and silver metal nanoparticles.

Broadband Finite-Difference Time-Domain Modeling of Plasmonic Organic Photovoltaics

  • Jung, Kyung-Young;Yoon, Woo-Jun;Park, Yong Bae;Berger, Paul R.;Teixeira, Fernando L.
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.654-661
    • /
    • 2014
  • We develop accurate finite-difference time-domain (FDTD) modeling of polymer bulk heterojunction solar cells containing Ag nanoparticles between the hole-transporting layer and the transparent conducting oxide-coated glass substrate in the wavelength range of 300 nm to 800 nm. The Drude dispersion modeling technique is used to model the frequency dispersion behavior of Ag nanoparticles, the hole-transporting layer, and indium tin oxide. The perfectly matched layer boundary condition is used for the top and bottom regions of the computational domain, and the periodic boundary condition is used for the lateral regions of the same domain. The developed FDTD modeling is employed to investigate the effect of geometrical parameters of Ag nanospheres on electromagnetic fields in devices. Although negative plasmonic effects are observed in the considered device, absorption enhancement can be achieved when favorable geometrical parameters are obtained.

A Study of Antibacterial Paper Packaging Material Coated with Chitosan-Ag Nanocomposite Prepared by Green Synthesis (키토산-은나노 녹색합성 복합물질을 적용한 항균 기능성 포장지 연구)

  • Kyung, Gyusun;Ko, Seonghyuk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.8-15
    • /
    • 2014
  • A novel antibacterial paper coated with chitosan-based silver (Ag) nanocomposite prepared by green synthesis has been investigated for a wide range of application in food, agricultural and medical packaging. Green synthesis of Ag nanoparticles (AgNPs) was carried out by a chemical reaction involving a mixture of chitosan-silver nitrate (AgNO3) in an autoclave at 15 psi, $121^{\circ}C$, for 15-120 sec. AgNPs and their formation in chitosan were confirmed by both UV-Vis spectroscopy and transmission electron microscope (TEM). Fourier transform infrared spectroscopy (FTIR) study showed that free amino groups in chitosan act as an effective reductant and AgNPs stabilizer. Antibacterial test of coated paper with as-prepared chitosan-AgNPs was performed qualitatively against E. coli based on the formation of halo zones around coated papers and it was shown to be effective in suppressing the growth of E. coli with increasing Ag contents in coating layer.

Utilization of Iodine for the Enhanced Permeance of Facilitated Olefin Transport Nanocomposite Membrane (올레핀 촉진수송 나노복합체 분리막의 투과도 향상을 위한 iodine의 활용)

  • Choi, Yeji;Lee, Eun Yong;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.448-452
    • /
    • 2014
  • Nanocomposite membrane to show facilitated olefin transport was prepared for enhanced separation performance. Addtion of halogen molecules into PVP/AgNPs/ TCNQ nanocomposite membrane was expected to further polarize the surface of AgNPs for enhancing the separation performance. The formation of AgNPs and presence of iodine was confirmed by TEM and EDS analysis, respectively. The separation performance for propylene/propane mixture was compared with that of PVP/AgNPs/TCNQ nanocomposite membrane. The long-term stability of membrane was investigated with time.

Natural Amino Acid Based Phenolic Derivatives for Synthesizing Silver Nanoparticles with Tunable Morphology and Antibacterial Studies

  • Kumar, V. Vinod;Nithya, S.;Shyam, Aswin;Subramanian, N. Sai;Anthuvan, J. Tennis;Anthony, Savarimuthu Philip
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2702-2706
    • /
    • 2013
  • Silver nanoparticles (AgNPs) with spherical and prism morphologies were formed at room temperature depend on the amino acid attached with phenolic unit. Absorption studies showed 410-420 nm surface plasmon resonance absorption for spherical nanoparticles whereas prism morphology showed three absorption peaks (382, 452 and 523 nm). The formation of spherical and prism morphology was confirmed by scanning and high resolution transmission electron microscopy. Antibacterial studies of both the morphologies did not show any significant differences in the inhibition of bacterial growth.

Ultra-sensitive Determination of Salinomycin in Serum Using ICP-MS with Nanoparticles

  • Cho, H.K.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3195-3198
    • /
    • 2014
  • An ultra-sensitive detection method for small molecules such as antibiotics was developed using ICP-MS with magnetic and $TiO_2$ nanoparticles. Since most of the antibiotics are too small to employ a sandwich-type extraction through an immunoreaction, a non-specific platform was employed, in which the target was extracted by magnetic separation, followed by tagging with $TiO_2$ nanoparticles of 11.2 nm for ICP-MS measurement. The detection limit for salinomycin obtained from spiked serum samples was $0.4ag\;mL^{-1}$ (${\pm}10.3%$), which was about $1.5{\times}10^6$ times lower than that of LC-MS/MS and about $1.2{\times}10^{11}$ times better than that of ELISA. Such an excellent sensitivity enabled us to study the toxicity of antibiotics exposed to human beings by determining them in serum.

Exposing Zebrafish to Silver Nanoparticles during Caudal Fin Regeneration Disrupts Caudal Fin Growth and p53 Signaling

  • Yeo, Min-Kyeong;Pak, Se-Wha
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.311-317
    • /
    • 2008
  • Zebrafish were exposed to commercial silver nanoparticles (${\sim}$10-20 nm) at 0.4 and 4 ppm during cadual fin regeneration. The silver was in the $Ag^+$ ionic form. Fin regeneration was slow in the group exposed to the lower concentration. The cadual fin, gill, and muscle were assayed after 48 hours and subjected to histological analysis. In all tissues sampled, fish exposed to nanoparticles exhibited infiltration, large mitochondria with empty matrices, and accumulation of nano-sized silver in blood vessels. The results suggested mitochondrial damage and induction of inflammation. Microarray analysis of RNA from young zebrafish (52 hours post-fertilization) that were exposed to nanometer-sized silver particles, showed alteration in expression of the p53 gene pathway related to apoptosis. Gene expression changes in the nanoparticle-treated zebrafish led to phenotypic changes, reflecting increased apoptosis.

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity (TiO2 복합 광촉매의 표면 특성과 광촉매 효율)

  • Lee, Jong-Ho;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.556-564
    • /
    • 2014
  • To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.