• 제목/요약/키워드: Aftershock

검색결과 33건 처리시간 0.04초

Seismic damage of long span steel tower suspension bridge considering strong aftershocks

  • Xie, X.;Lin, G.;Duan, Y.F.;Zhao, J.L.;Wang, R.Z.
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.767-781
    • /
    • 2012
  • The residual capacity against collapse of a main shock-damaged bridge can be coupled with the aftershock ground motion hazard to make an objective decision on its probability of collapse in aftershocks. In this paper, a steel tower suspension bridge with a main span of 2000 m is adopted for a case-study. Seismic responses of the bridge in longitudinal and transversal directions are analyzed using dynamic elasto-plastic finite displacement theory. The analysis is conducted in two stages: main shock and aftershocks. The ability of the main shock-damaged bridge to resist aftershocks is discussed. Results show that the damage caused by accumulated plastic strain can be ignored in the long-span suspension bridge. And under longitudinal and transversal seismic excitations, the damage is prone to occur at higher positions of the tower and the shaft-beam junctions. When aftershocks are not large enough to cause plastic strain in the structure, the aftershock excitation can be ignored in the seismic damage analysis of the bridge. It is also found that the assessment of seismic damage can be determined by superposition of damage under independent action of seismic excitations.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Seismic train-bridge coupled system sensitivity analysis considering random aftershock intensity and residual track deformation

  • Jincheng Tan;Manman Chen;Xiang Liu;Han Zhao;Lizhong Jiang;Peidong Guo;Wangbao Zhou;Ping Xiang
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.25-38
    • /
    • 2024
  • After the mainshock, whether the train can be allowed to pass the bridges plays an important role in ensuring the transport of supplies and rescue works for example, in the "12 May" earthquake in China, after evaluation, the bridge was still used for transportation in rescue at a very slow speed, engineers usually evaluate whether the train can pass the bridge safely based on the experience, lacks sufficient calculation basis and does not fully consider the risk caused by aftershocks. To address this issue, this paper comprehensively considers the randomness of track irregularity, the randomness of aftershock intensity and other multiple random sources in train-bridge interaction system (TBIS). The sensitivity of train to various random parameters after earthquake is analyzed from the perspective of probability, the most sensitive random variable in this paper is PGA of aftershocks, both for bridge and trailer car, With the increase of epicentral distance, the sensitivity of PGA will decrease, and correspondingly, for trailer car, the sensitivity of other random variables will increase, research in this paper provides a basis for the subsequent random analysis of post-earthquake driving safety.

Seismic performance evaluation of an external steel frame retrofit system

  • Michael Adane;Hyungoo Kang;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.549-562
    • /
    • 2024
  • In this study a steel moment frame system to be installed on the exterior surface of an existing structure is proposed as a seismic retrofit device. The seismic performance of the retrofit system was investigated by installing it on the exterior of a single story single bay reinforced concrete frame and testing it under cyclic loading. The cyclic loading test results indicated that the steel frame significantly enhanced the strength and ductility of the bare structure. Finite element analysis was carried out to validate the test results, and it was observed that there was good agreement between the two results. An analytical model was developed in order to apply the retrofit system to an example structure subjected to seven mainshock-aftershock sequential earthquake records. It was observed that the model structure was severely damaged due to the mainshock earthquakes, and the seismic response of the model structure increased significantly due to the subsequent aftershock earthquakes. The seismic retrofit of the model structure using the proposed steel frame turned out to be effective in decreasing the seismic response below the given limit state.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

Impact of initial damage path and spectral shape on aftershock collapse fragility of RC frames

  • Liu, Yang;Yu, Xiao-Hui;Lu, Da-Gang;Ma, Fu-Zi
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.529-540
    • /
    • 2018
  • The influences of initial damage paths and aftershock (AS) spectral shape on the assessment of AS collapse fragility are investigated. To do this, a four-story ductile reinforced concrete (RC) frame structure is employed as the study case. The far-field earthquake records recommended by FEMA P695 are used as AS ground motions. The AS incremental dynamic analyses are performed for the damaged structure. To examine the effect of initial damage paths, a total of six kinds of initial damage paths are adopted to simulate different initial damage states of the structure by pushover analysis and dynamic analysis. For the pushover-based initial damage paths, the structure is "pushed" using either uniform or triangle lateral load pattern to a specified damage state quantified by the maximum inter-story drift ratio. Among the dynamic initial damage paths, one single mainshock ground motion or a suite of mainshock ground motions are used in the incremental dynamic analyses to generate a specified initial damage state to the structure. The results show that the structure collapse capacity is reduced as the increase of initial damage, and the initial damage paths show a significant effect on the calculated collapse capacities of the damaged structure (especially at severe damage states). To account for the effect of AS spectral shape, the AS collapse fragility can be adjusted at different target values of ${\varepsilon}$ by using the linear correlation model between the collapse capacity (in term of spectral intensity) and the AS ${\varepsilon}$ values, and coefficients of this linear model is found to be associated with the initial damage states.

3-D Velocity Models In the Central Taiwan Region

  • Kim, Kwang-Hee;Yoo, Hai-Soo;Suk, Bong-Chool
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2007년도 춘계 지질과학기술 공동학술대회
    • /
    • pp.425-427
    • /
    • 2007
  • See Full Text

  • PDF

Temporal and Spatial Variations of the ML 5.8 Gyeongju Earthquake on September 12, 2016

  • Lee, Gyeong Su;Kyung, Jai Bok;Lee, Sang Jun
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.342-348
    • /
    • 2018
  • An earthquake of $M_L$ 5.8 hit the Gyeongju area on September 12, 2016. A sequence of foreshock-mainshock-aftershock of 588 events with equal to or greater than magnitude 1.5 occurred for six months in this area. Around ninety-nine percentage (98.8%) of the total energy was released intensively within a day, and about 80% of the total events took place within a month after the Gyeongju earthquake. The epicentral distribution of aftershocks of major events ($M_L$ 5.1, 5.8, 4.5, and 3.5) were elongated in the direction of $N30^{\circ}E$. They correlate well with the focal mechanism solution. These facts support the inference that the Gyeongju earthquakes occurred on a sub-parallel subsidiary fault of the Yangsan fault zone or on the linking damage zones between Deokcheon and Yangsan fault. During the last six years before the Gyeongju earthquake, there were few events within 10-km radius from the epicenter. This seismic gap area was filled with a sequence of the Gyeongju earthquakes. The b value for aftershock of the Gyeongju earthquakes is 1.09.

CURRENT ISSUES ON PRA REGARDING SEISMIC AND TSUNAMI EVENTS AT MULTI UNITS AND SITES BASED ON LESSONS LEARNED FROM TOHOKU EARTHQUAKE/TSUNAMI

  • Ebisawa, Katsumi;Fujita, Masatoshi;Iwabuchi, Yoko;Sugino, Hideharu
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.437-452
    • /
    • 2012
  • The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Dai-ichi NPP (F1-NPP) were overwhelmed by the tsunami and core damage occurred. This paper describes the overview of F1-NPP accident and the usability of tsunami PRA at Tohoku earthquake. The paper makes reference to the following current issues: influence on seismic hazard of gigantic aftershocks and triggered earthquakes, concepts for evaluating core damage frequency considering common cause failure with correlation coefficient against seismic event at multi units and sites, and concepts of "seismic-tsunami PSA" considering a combination of seismic motion and tsunami effects.

Modeling the cumulative residual deformation of high-speed railway bridge pier subjected to multiple earthquakes

  • Gou, Hongye;Leng, Dan;Yang, Longcheng;Jia, Hongyu
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.317-327
    • /
    • 2019
  • High-speed railway bridge piers in seismically active area may be subjected to multiple earthquakes and then produce cumulative residual deformation. To study the cumulative residual deformation of high-speed railway bridge piers under multiple earthquakes, a nonlinear numerical analytical model with multi-DOF (MDOF) system is presented and validated against two shaking table tests in this paper. Based on the presented model, a simple supported beam bridge pier model of high-speed railway is established and used to investigate the cumulative residual deformation of high-speed railway bridge pier under mainshock-aftershock sequences and swarm type seismic sequences. The results show that the cumulative residual deformation of the bridge pier increases with earthquake number, and the increasing rates are different under different earthquake number. The residual deformation of bridge pier subjected to multiple earthquakes is accumulated and may exceed the limit of code.