• Title/Summary/Keyword: After-Cooling analysis

Search Result 335, Processing Time 0.023 seconds

Influence of nonthermal argon plasma on the shear bond strength between zirconia and different adhesives and luting composites after artificial aging

  • Pott, Philipp-Cornelius;Syvari, Timo-Sebastian;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.308-314
    • /
    • 2018
  • PURPOSE. Plasma activation of hydrophobic zirconia surfaces might be suitable to improve the bond strength of luting materials. The aim of this study was to analyze the influence of nonthermal argon-plasma on the shear bond strength (SBS) between zirconia and different combinations of 10-MDP adhesive systems and luting composites after artificial aging. MATERIALS AND METHODS. Two hundred forty Y-TZP specimens were ground automatically with $165{\mu}m$ grit and water cooling. Half of the specimens received surface activation with nonthermal argon-plasma. The specimens were evenly distributed into three groups according to the adhesive systems ([Futurabond U, Futurabond M, Futurabond M + DCA], VOCO GmbH, Germany, Cuxhaven) and into further two subgroups according to the luting materials ([Bifix SE, Bifix QM], VOCO GmbH). Each specimen underwent artificial aging by thermocycling and water storage. SBS was measured in a universal testing machine. Statistical analysis was performed using ANOVA and $Scheff{\grave{e}}$ procedure with the level of significance set to 0.05. RESULTS. Surface activation with nonthermal plasma did not improve the bond strength between zirconia and the tested combinations of adhesive systems and luting materials. The plasma-activation trended to reveal higher bond strength if the self-etch luting material (Bifix SE) was used, irrespective of the adhesive system. CONCLUSION. Plasma-activation seems to be suitable to improve bond strength between zirconia and self-etch resin materials. However, further research is necessary to identify the influence of varying plasma-parameters.

Structural Changes in Isothermal Crystallization Processes of Synthetic Polymers Studied by Time-Resolved Measurements of Synchrotron-Sourced X-Ray Scatterings and Vibrational Spectra

  • Tashiro, Kohji;Hama, Hisakatsu
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The structural changes occurring in the isothermal crystallization processes of polyethylene (PE), poly-oxymethylene (POM), and vinylidene fluoridetrifluoroethylene (VDFTrFE) copolymer have been reviewed on the basis of our recent experimental data collected by the time-resolved measurements of synchrotron-sourced wide-angle (WAXS) and small-angle X-ray scatterings (SAXS) and infrared spectra. The temperature jump from the melt to a crystallization temperature could be measured at a cooling rate of 600-1,000 $^{\circ}C$/min, during which we collected the WAXS, SAXS, and infrared spectral data successfully at time intervals of ca. 10 sec. In the case of PE, the infrared spectral data clarified the generation of chain segments of partially disordered trans conformations immediately after the jump. These segments then became transformed into more-regular all-trans-zigzag forms, followed by the formation of an orthorhombic crystal lattice. At this stage, the generation of a stacked lamella structure having an 800-${\AA}$-long period was detected in the SAXS data. This structure was found to transfer successively to a more densely packed lamella structure having a 400-${\AA}$-long period as a result of the secondary crystallization of the amorphous region in-between the original lamellae. As for POM, the formation process of a stacked lamella structure was essentially the same as that mentioned above for PE, as evidenced from the analysis of SAXS and WAXS data. The observation of morphology-sensitive infrared bands revealed the evolution of fully extended helical chains after the generation of lamella having folded chain structures. We speculate that these extended chains exist as taut tie chains passing continuously through the neighboring lamellae. In the isothermal crystallization of VDFTrFE copolymer from the melt, a paraelectric high-temperature phase was detected at first and then it transferred into the ferroelectric low-temperature phase at a later stage. By analyzing the reflection profile of the WAXS data, the structural ordering in the high-temperature phase and the ferroelectric phase transition to the low-temperature phase of the multi-domain structure were traced successfully.

Effect of Dimethylformamide on Post-Thaw Motility, Acrosome Integrity, and DNA Structure of Frozen Boar Sperm

  • Hwang, You-Jin;Yang, Jae-Hun;Kim, Sang-Ok;Kim, Bo-Kyung;Choi, Seon-Kyu;Park, Choon-Keun;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.24 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • The beneficial effect of glycerol as a cryoprotectant, especially for sperm cryopreservation, has been shown in many studies. However, glycerol is toxic to living cells, and boar sperm in particular show greater sensitivity to glycerol than sperm from other domestic animals. Amides have been studied as alternative cryoprotectants for freezing stallion sperm. Sperm frozen in methylformamide or dimethylformamide as cryoprotectants show similar motility when thawed compared with sperm frozen in glycerol. We evaluated the cryoprotective effects of dimethylformamide on boar sperm freezing. To test the effect of amides, the concentration of boar semen was adjusted to $10^9sperm/mL$, and seminal plasma was removed using Hulsen solution. After centrifugation, the pellet was diluted in modified-Modena B extender. Lactose-egg yolk (LEY) extender was used as the cooling extender. The freezing extender was madeed aaddition of the optimal amount of glycerol and amides to LEY-Glycerol-Orvus ES Paste extender, and this extender was used for the second dilution. Diluted sperm were frozen in liquid nitrogen using the 0.5 mL straw method. Sperm frozen in extender with glycerol as a cderol were compared with those frozen in extender including the different amides. Sperm were tested for motility, viability, the sperm chromatin structure assay, and normal apical ridge after thawing. The percent of motile sperm diluted in glycerol was as high as that in the stallion study (61%). Dimethylformamide showed positive effects on sperm quality and was better than glycerol. Methylformamide provided similar sperm quality as glycerol. Therefore, dimethylformamide is useful for reducing cryoinjury in boar sperm and is expected to be useful as an alternative cryoprotectant.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

A Study of Characteristics on the Dissimilar Metals (ASTM Type 316L - Carbon Steel : ASTM A516-70) Welds Made with FCA Multiple Layer Welding (스테인리스강(ASTM Type 316L)과 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Hyun, Jun Hyeok;Shin, Tae Woo;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.69-76
    • /
    • 2016
  • Characteristics of dissimilar metal welds between ASTM Type 316L and carbon steel ASTM A516 Gr.70 made with FCAW were evaluated in terms of microstructure, ferrite content, EDS analysis, hardness, tensile strength, impact toughness and corrosion resistance. Three heat inputs of 10.4, 16.9, 23.4kJ/cm were employed to make joints of dissimilar metals with E309LMoT1-1 wire. Microstructure of dissimilar weld metals consisted of mostly vermicular type of ${\delta}$-ferrite and some lathy type of ${\delta}$-ferrite, and ${\delta}$-ferrite was transformed into globular type in reheated zone. In all conditions, weld metals were solidified on FA solidification mode. Based on the EDS analysis of weld metals, All Creq/Nieq values were in the range of FA solidification mode, and it was decreased with increasing heat inputs whereas it was increased with increasing layers. The amount of ${\delta}$-ferrite was decreased with increasing heat input due to the difference of cooling rate, and it was increased with increasing layers. Accordingly, hardness and tensile strength of dissimilar metals weld joints was decreased with increasing heat input while impact energy was increased with increasing heat input. Corrosion test of dissimilar metals weld joints showed that weight gain rate of heat input 10.4kJ/cm was the greatest, and that of three heat inputs became constant after certain time.

Study on Chemical Stabilities with R-1234yf Refrigerant of Polyol Ester Refrigerant Oil for Electric Vehicles (전기 자동차용 폴리올 에스테르계 냉동기유의 R-1234yf 냉매와의 적합성 연구)

  • Hong, J.S.;Chung, K.W.;Kim, N.K.;Shin, J.H.;Kim, Young Woon;Lee, E.H.;Go, B.S.;Hwang, S.Y.
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.139-146
    • /
    • 2020
  • Global warming has led to an increase in demand of eco-friendly vehicles, such as electric cars, for reducing greenhouse gas emissions, and especially, regulating carbon dioxide generation. In addition, electric vehicles are equipped with an electric drive-type hermetic scroll compressor and a refrigerant, which exhibit current and future trends of using environmentally friendly refrigerants, including R-1234yf. In this study, polyol ester-based refrigeration oils are prepared via condensation esterification of polyol and fatty acids. The oils can be combined with R-1234yf refrigerant for applications in air conditioning and cooling systems of electric vehicles. The structure of synthetic polyol esters is confirmed via 1H-NMR and FT-IR spectrum analysis, and the composition of the polyol ester is analyzed via gas chromatogram analysis. Furthermore, kinematic viscosity, viscosity index, total acid value, pour point, and color are analyzed as fundamental physical properties of the synthetic polyol esters. The compatibility and chemical stability of the synthetic polyol ester combined with the R-1234yf refrigerant are obtained via high temperature and high pressure oil-resistant refrigerant tests. The changes in the oil color and catalyst activity are observed before and after the experiment to determine whether it is suitable as a refrigerator oil.

Analysis of Heat Transfer Characteristics in Soil for Development of a Geothermal Heat Exchange System (지열 열교환시스템 개발을 위한 지중 열유동 특성분석)

  • Lee Y. B.;Cho S. I.;Kang C. H.;Jung I. K.;Lee C. G.;Sung J. H.;Chung S. O.;Kim Y. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.185-191
    • /
    • 2005
  • Importance of alternative energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in the protected cultivation sector in Korea needs to be reduced for profitability and global competition. But, study on geothermal energy to solve these problems has not been activated for Korean protected cultivation. This study was conducted to develop an optimized geothermal exchange system through fundamental test of heat transfer characteristics in soil such as thermal diffusivity, changes in soil temperature during heating and cooling operations, and restorations of soil temperature after the heater was fumed off, These issues were investigated using computer simulation for different depths. The simulated characteristics were evaluated through controlled tests. Simulated characteristics of heat transfer in the soil at different depths showed a reasonable agreement with the results of the controlled tests. All of computer simulation and controlled tests, soil temperatures changed at 10cm and 20cm distance from pipe. but don't change at more than 30cm distance. It means that distances of heat transfer of the soil ranged from 20 to 30cm a day. Based on these results, the optimum spacing between adjacent heat exchange pipes and the pitch were selected as 50 and 40cm, respectively.

Development the Technique for Fabrication of the Thermal Fatigue Crack to Enhance the Reliability of Structural Component in NPPs (원자력 구조재 신뢰성 향상을 위한 열피로 균열 시험편 제작 기법 개발)

  • Kim, Yong;Kim, Jae-Sung;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.43-49
    • /
    • 2008
  • Fatigue cracks due to thermal stratification or corrosion in pipelines of nuclear power plants can cause serious problems on reactor cooling system. Therefore, the development of an integrated technology including fabrication of standard specimens and their practical usage is needed to enhance the reliability of nondestructive testing. The test material was austenitic STS 304, which is used as pipelines in the Reactor Coolant System of a nuclear power plants. The best condition for fabrication of thermal fatigue cracks at the notch plate was selected using the thermal stress analysis of ANSYS. The specimen was installed from the tensile tester and underwent continuos tension loads of 51,000N. Then, after the specimen was heated to $450^{\circ}C$ for 1 minute using HF induction heater, it was cooled to $20^{\circ}C$ in 1 minute using a mixture of dry ice and water. The initial crack was generated at 17,000 cycles, 560 hours later (1cycle/2min.) and the depth of the thermal fatigue crack reached about 40% of the thickness of the specimen at 22,000 cycles. As a results of optical microscope and SEM analysis, it is confirmed that fabricated thermal fatigue cracks have the same characteristics as real fatigue cracks in nuclear power plants. The crack shape and size were identified.

Temperature Analysis for Welding Part of Capstan Drum using Finite Element Method (유한요소법을 이용한 캡스턴 드럼의 용접부 온도해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.322-328
    • /
    • 2000
  • Welding means that metal parts are joined by melting (with or without a filler material) or that new material is added to a metal part by melting. Welding of metal parts is an important technology method in manufacturing processes of capstan drum for costal vessels. Thermal stresses due to the non-uniform temperature fields during welding influence both the fabrication and the use of the weldment. In the problem of this thermal effect, particularly it is a well known that analysis for temperature gradient, temperature distribution, and the like become consequence factors to a safety and a strength design. This paper analyzes the temperature distribution of welding part in capstan drum for the inshore and costal vessels using finite element method. At early stage of the cooling after welding processes, the abrupt temperature gradient has been shown in vicinity of the bottom face of welding part. Therefore it calculates the numerical value that can be applied to the optimal design of welding parts in the shapes for capstan drum.

  • PDF

Analysis of Sea Surface Temperature Distribution Around Uljin Nuclear Power Station Using Time Series Landsat Satellite Images (시계열 Landsat 위성영상을 활용한 울진 원자력발전소 주변 해수온도 분포분석)

  • Choi, Seung-Pil;Yook, Woon-Soo;Hong, Sung-Chang;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.51-57
    • /
    • 2007
  • In this study, We analyzed change of sea surface temperature due to cooling water around nuclear power station. Study area is around of Uljin nuclear power station, which is relatively large power station. There are many problems in monitering environmental change around of nuclear power station, because area is relatively large. We used Landsat 5, 7 Imagery which are useful in temperature analysis and can be easily obtained. After we georeferenced Landsat Imagery, radiance and sea surface temperature were calculated. As a result, As we compared sea surface temperature of surrounding area of nuclear power station with same area located 3 km east, there are $2.049^{\circ}C$ temperature difference.

  • PDF