• Title/Summary/Keyword: Affine transformation

Search Result 128, Processing Time 0.022 seconds

A New Shape-Based Object Category Recognition Technique using Affine Category Shape Model (Affine Category Shape Model을 이용한 형태 기반 범주 물체 인식 기법)

  • Kim, Dong-Hwan;Choi, Yu-Kyung;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • This paper presents a new shape-based algorithm using affine category shape model for object category recognition and model learning. Affine category shape model is a graph of interconnected nodes whose geometric interactions are modeled using pairwise potentials. In its learning phase, it can efficiently handle large pose variations of objects in training images by estimating 2-D homography transformation between the model and the training images. Since the pairwise potentials are defined on only relative geometric relationship betweenfeatures, the proposed matching algorithm is translation and in-plane rotation invariant and robust to affine transformation. We apply spectral matching algorithm to find feature correspondences, which are then used as initial correspondences for RANSAC algorithm. The 2-D homography transformation and the inlier correspondences which are consistent with this estimate can be efficiently estimated through RANSAC, and new correspondences also can be detected by using the estimated 2-D homography transformation. Experimental results on object category database show that the proposed algorithm is robust to pose variation of objects and provides good recognition performance.

  • PDF

Measurement and Algorithm Calculation of Maxillary Positioning Change by Use of an Optoelectronic Tracking System Marker in Orthognathic Surgery (악교정수술에서 광전자 포인트 마커를 이용한 상악골 위치 변화의 계측 및 계산 방법 연구)

  • Park, Jong-Woong;Kim, Soung-Min;Eo, Mi-Young;Park, Jung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.233-240
    • /
    • 2011
  • Purpose: To apply a computer assisted navigation system to orthognathic surgery, a simple and efficient measuring algorithm calculation based on affine transformation was designed. A method of improving accuracy and reducing errors in orthognathic surgery by use of an optical tracking camera was studied. Methods: A total of 5 points on one surgical splint were measured and tracked by the Polaris $Vicra^{(R)}$ (Northern Digital Inc Co., Ontario, Canada) optical tracking system in two cases. The first case was to apply the transformation matrix at pre- and postoperative situations, and the second case was to apply an affine transformation only after the postoperative situation. In each situation, the predictive measuring value was changed to the final measuring value via an affine transformation algorithm and the expected coordinates calculated from the model were compared with those of the patient in the operation room. Results: The mean measuring error was $1.027{\pm}0.587$ using the affine transformation at pre- and postoperative situations and the average value after the postoperative situation was $0.928{\pm}0.549$. The farther a coordinate region was from the reference coordinates which constitutes the transform matrixes, the bigger the measuring error was found which was calculated from an affine transformation algorithm. Conclusion: Most difference errors were brought from mainly measuring process and lack of reproducibility, the affine transformation algorithm formula from postoperative measuring values by using of optic tracking system between those of model surgery and those of patient surgery can be selected as minimizing the difference error. To reduce coordinate calculation errors, minimum transformation matrices must be used and reference points which determine an affine transformation must be close to the area where coordinates are measured and calculated, as well as the reference points need to be scattered.

AFFINE TRANSFORMATION OF A NORMAL ELEMENT AND ITS APPLICATION

  • Kim, Kitae;Namgoong, Jeongil;Yie, Ikkwon
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.517-527
    • /
    • 2014
  • In this paper, we study affine transformations of normal bases and give an explicit formulation of the multiplication table of an affine transformation of a normal basis. We then discuss constructions of self-dual normal bases using affine transformations of traces of a type I optimal normal basis and of a Gauss period normal basis.

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF

A Simple Eye Gaze Correction Scheme Using 3D Affine Transformation and Image In-painting Technique

  • Ko, Eunsang;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 2018
  • Owing to high speed internet technologies, video conferencing systems are exploited in our home as well as work places using a laptop or a webcam. Although eye contact in the video conferencing system is significant, most systems do not support good eye contact due to improper locations of cameras. Several ideas have been proposed to solve the eye contact problem; however, some of them require complicated hardware configurations and expensive customized hardwares. In this paper, we propose a simple eye gaze correction method using the three-dimensional (3D) affine transformation. We also apply an image in-painting method to fill empty holes that are caused by round-off errors from the coordinate transformation. From experiments, we obtained visually improved results.

Investigation of Long-Term Shoreline Changes Using Aerial Images (항공사진을 이용한 장기해안선변화 조사)

  • 정승진;김규한;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this paper, the affine transformation method that is more simpler compare with digital orthophoto method is used analyzed the long-term shoreline change, and accuracy estimation was carried out. As a result of this study, it was able to check that the shoreline change on Namhangjin coast had eroded significantly compare with the past. Moreover, as a result of accuracy estimation, it shows that the RMS error around shoreline was about 1-2 m. In consideration that maximum allowable error shown in aerial photogrammetry specification is within 2 m, therefore, analysis results of shoreline change using affine transformation method on aerial images is reliable.

A Study on Plane Coordinate Transformation of Digital Map (수치지도의 평면좌표변환에 관한 연구)

  • 최병길;이형수
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.309-315
    • /
    • 2003
  • This study is aimed to research the precise and efficient method for coordinate transformation. In Korea, it is necessary to convert existing digital maps in TM coordinates to that in KTRF from 2007. In this study, coordinate transformation methods and conversion area are tested and analyzed. In the results of experiment, it shows that Affine method is preciser than Helmert method. But Affine method is have more distortion than Helmert method.

  • PDF

Identification of Fish Species using Affine Transformation and Principal Component Analysis of Time-Frequency Images of Broadband Acoustic Echoes from Individual Live Fish (활어 개체어의 광대역 음향산란신호에 대한 시간-주파수 이미지의 어파인 변환과 주성분 분석을 이용한 어종식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • Joint time-frequency images of the broadband echo signals of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution in controlled environments. Affine transformation and principal component analysis were used to obtain eigenimages that provided species-specific acoustic features for each of the six fish species. The echo images of an unknown fish species, acquired in real time and in a fully automated fashion, were identified by finding the smallest Euclidean or Mahalanobis distance between each combination of weight matrices of the test image of the fish species to be identified and of the eigenimage classes of each of six fish species in the training set. The experimental results showed that the Mahalanobis classifier performed better than the Euclidean classifier in identifying both single- and mixed-species groups of all species assessed.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.