• Title/Summary/Keyword: Affect of Blasting

Search Result 49, Processing Time 0.027 seconds

에멀젼 폭약의 폭속변화에 따른 진동특성 연구

  • Gang, Dae-U;An, Bong-Do
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.351-357
    • /
    • 2007
  • We have compared a special character(pressure of explosion, gas volume, energy of explosion, temperature of explosion, strength) of different three emulsion explosives which is different velocity by Nitrodyn program that is calculated explosion reaction. We have analyzed the character of the vibration from a vibration data which is a result from test blasting in different velocity of detonation for three emulsion explosives of the same size(17mm) in the same rock. As a result, the vibration is decreased when the velocity of detonation is decreased within 40m from origin of explosion but it is familiar character over 40m, so there isn't much affect the velocity of detonation in decreased vibration over 40m.

  • PDF

Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass (암반절리를 고려한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seok-Won;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.229-234
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating read. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.475-480
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating road. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

Stability Assessment of Abandoned Gangway for Commercial Utilization of Services (서비스업 활용을 위한 광산 폐갱도의 안정성 평가)

  • SunWoo, Choon;Chung, So-Keul;Lee, Yun-Su;Kang, Sang-Soo;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.297-309
    • /
    • 2012
  • The stability assessment of abandoned gangway for the purpose of services was performed. Among the many factors that affect the stability of openings, the span of the opening in a given rock mass condition provides an important element of design. In this paper, the stability of gangway was assessed by the critical span curves proposed by Lang, the modified Mathews'stability graph method and using support measures of the Q system. In the evaluation of stability as a whole the gangway is considered as stable. But the rockfalls of wedge-shaped blocks were expected in the area in which the horizontal joints of low angle appear. The support measures such as local rock bolts are required to use for commercial purposes of the abandoned gangway. And entrance section may require the particular attention as unstable section. Since there are so many spalling due to bad blasting in the roof and sidewall of gangway, the scaling operations should be followed primarily.

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

Assessment of Blast-induced Vibration Using Dynamic Distinct Element Analysis (불연속체 동해석 기법을 이용한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seokwon;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon;Jung, Du-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1389-1397
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced nitration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been increased recently in order to analyze the effect of the blast-Induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure corves estimated tv theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a dynamic distinct element analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast. Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced nitration and the stability of rock slope.

Effect of Dynamite Explosion Work Noise on Behavior of Israeli Carp, Cyprinus carpio in the Cage of Aquaculture (양식 향어의 행동에 미치는 발파작업 소음의 영향에 관한 연구)

  • SHIN Hyeon Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.348-355
    • /
    • 2000
  • This paper described the relationship between the behavior of the Israeli carp, Cyprinus carpio and the environmental noise level due to the dynamite explosion work. The experiment was conducted in the cage ($L10{\times}W4{\times}D4 m$) of aquaculture located at Chungjoo Lake, Chechon, in 1997. The fish trajectory was obtained by the telemetry system in which a pulsed ultrasonic pinger ($50 kHz, {\phi}16{\times}L70 mm$) attached to the fish was tracked three dimensionally, and the underwater noise levels were measured. The results of the study were as follows: 1. The underwater noise levels in the normal blasting measured at a distance of 400 m from the source of noise increased by $40 dB (re 1 {\mu}Pa)$ compared to the levels before explosion. The dominant frequency and the increased power spectrum level of the underwater noise by the explosion work were $75 to 100 Hz and 22.9 to 35.3 dB$, respectively. 2. The underwater noise levels in the test blasting measured at a distance of 350 m from the source of noise increased by average $49.5 dB (re 1 {\mu}Pa)$compared to the levels before explosion. 3. The swimming area of the fish was reduced with the time after explosion, and after more than one hour the fish represented the similar swimming area and behavior to the status of right before explosion. 4, The swimming depth layer of the fish was most of the case at the sea surface less than 1,0 m except during explosion or right after of it. But the fish swam downward when an external stimulus like the explosion noise was given to the fish. 5. The average swimming speeds of the fish before, during and after the works were about 1.2 times, 1.9 times and 1.0 times of the body length, respectively, and the speed of the fish with explosion was faster 1.6 times than the speed without of that. Consequently, the explosion noise levels measured by this study were sufficiently high to affect the fish, and the heavy shock by the explosion works could produce a considerable unfavorable effects to the fish.

  • PDF

Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities (편평한 암석절리면의 속도 의존적 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Recently, the probability of rock joints being exposed to free faces is getting higher for the scale of rock mass structures gets larger. Also, the frequency of occurring dynamic events such as earthquakes and blasting has been increasing. Thus, the shear behavior of rock joints under different conditions needs to be investigated. In this study, a series of direct shear tests were carried out under various conditions to examine the velocity-dependent shear behavior of saw-cut rock joints. Two types of direct shear test were carried out. The first was to examine the velocity-dependent shear behavior of saw-cut rock joints at seven different shear velocities, each with three different normal stresses. The second was to examine the shear behavior of saw-cut rock joints when three different instantaneous shear velocities changed. As a result, the coefficient of friction was affected by normal stress. The breakpoint velocity, the point when the change of shear velocity starts to affect the frictional behavior, became lower as normal stress increased. Also, as the shear velocity became lower, the degree of stress-drop on stick-slip behavior became larger. As a result of examining the changes of friction coefficient, velocity weakening (decrease of friction coefficient) was observed. The decrement of friction coefficient due to the changes of shear velocity under slow shear velocity was larger than that under fast shear velocity.

  • PDF