• Title/Summary/Keyword: Aerospace Reliability

Search Result 451, Processing Time 0.019 seconds

A Probabilistic based Systems Approach to Reliability Prediction of Solid Rocket Motors

  • Moon, Keun-Hwan;Gang, Jin-Hyuk;Kim, Dong-Seong;Kim, Jin-Kon;Choi, Joo-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.565-578
    • /
    • 2016
  • A probabilistic based systems approach is addressed in this study for the reliability prediction of solid rocket motors (SRM). To achieve this goal, quantitative Failure Modes, Effects and Criticality Analysis (FMECA) approach is employed to determine the reliability of components, which are integrated into the Fault Tree Analysis (FTA) to obtain the system reliability. The quantitative FMECA is implemented by burden and capability approach when they are available. Otherwise, the semi-quantitative FMECA is taken using the failure rate handbook. Among the many failure modes in the SRM, four most important problems are chosen to illustrate the burden and capability approach, which are the rupture, fracture of the case, and leak due to the jointed bolt and O-ring seal failure. Four algorithms are employed to determine the failure probability of these problems, and compared with those by the Monte Carlo Simulation as well as the commercial code NESSUS for verification. Overall, the study offers a comprehensive treatment of the reliability practice for the SRM development, and may be useful across the wide range of propulsion systems in the aerospace community.

Aviation Security Equipments Certification System in Korea: Suggestions for Improvement (항공보안장비 성능인증제의 고도화 방안에 관한 연구)

  • Lee, Wonjoo;Yu, Sangwoo;Park, Soohong;Kim, Kyunghoon;Ha, Dasom;Seoll, Eunsuk;Han, Soojin;Park, Seoha;Lee, Jisu;Kim, Chanhwi;Kang, Jingu;Lee, Kiyoung
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.395-408
    • /
    • 2020
  • Purpose: This study was performed for advancement of aviation security equipments certification system. Methods: We investigated aviation security equipments certification-related registrations and the latest research trends of explosive detection technologies. Based on the literature studies, we draw the critical issues of the aviation security equipment certification system and suggested improvement direction. Results: We found some inaccuracies of the definition of explosive trace detection equipments, accreditation review committee, and performance evaluation test method. These problems should be modified to suit being practical. Conclusion: The present results would be useful for basic data for modifying aviation security equipments certification systems.

A Study on the Reliability Management Program during Spacecraft Development (인공위성 개발과정에서의 시스템 신뢰성 관리 프로그램)

  • Yoo, Seung-Woo;Jin, Young-Kwon;Lee, Jong-Hee
    • Journal of Applied Reliability
    • /
    • v.8 no.3
    • /
    • pp.145-154
    • /
    • 2008
  • 인공위성은 지상 시스템과는 달리 극한 발사환경 및 우주환경에 노출되고, 운용 중 수리가 불가능하며, 임무 실패에 따른 위험비용이 매우 크기 때문에 고신뢰성, 고비용의 부품, 장비 및 시스템을 채택하여 개념설계단계에서부터 신뢰성을 관리한다. 신뢰성 관리의 주요 목적은 설계변경 및 개발 사이클의 반복을 최소화하고, 개발비용을 절감하며, 시스템의 신뢰성을 향상시키기 위한 것으로서, 대부분의 우주시스템 개발 프로젝트에서는 제품보증(Product Assurance) 활동의 일환으로 수행된다. 제품보증 업무는 크게 품질보증, 신뢰성 관리, EEE 부품관리, 재료 및 공정(Material & Process) 관리, 오염관리, 소프트웨어 품질보증 등으로 구분되지만, 포괄적인 의미의 신뢰성 관리 범주에 이를 모두 포함시키기도 한다. 인공 위성의 개발과정에서 기술성능지표 중 하나로서 중점 관리되고 있는 시스템 신뢰성 관리의 세부기법, 프로세스, 개선 필요사항 등에 대하여 살펴보고자 한다.

  • PDF

A Study on Reality and Quality Improvement of Aviation Security Equipments Performance Certification System in Korea (항공보안장비 성능 인증제의 현실과 품질개선에 관한 연구)

  • Lee, Wonjoo;You, Sangwoo;Park, Soohong;Kim, Kyunghoon;Seol, Eunsuk;Han, Soojin;Park, Seoha;Lee, Jisu;Kim, Chanhwi;Kang, Jingu;Lee, Kiyoung
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.2
    • /
    • pp.113-125
    • /
    • 2021
  • Purpose: This study focused on reality and quality improvement of aviation security equipment performance certification system. Methods: For this propose, we analyzed aviation security equipment performance certification system related legislations. Using analyzed data, we suggested advancement plan of aviation security equipment performance certification system. Results: In results, South Korea has been implementing aviation security performance certification system since October 2018. Parts for improvement of system are mutual certification with major countries that operate aviation security equipment performance certification systems, the spread of the defense industry's system, development of similar substances for handling explosives, and introduction of preliminary inspections. Conclusion: The research result could be used as a basic data for upgrading Korea's aviation security performance certification system.

A Study on Reliability Evaluation and Improvement Process of Aerospace Electronic Equipments using Operational Reliability-Cost Matrix (신뢰성-비용 매트릭스를 이용한 항공전자장비의 신뢰성 평가 및 개선 프로세스 연구)

  • Jo, In-Tak;Lee, Sang-Cheon;Park, Jong-Hun;Bae, Sung-Moon
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.633-646
    • /
    • 2014
  • Purpose: The conventional predicted MFTBF by military standard has a wide discrepancy to that of real-world operation, which leads to overstock and increase operation cost. This paper introduces a analyzing frame using operational reliability and cost data to overcome the discrepancy, and provides reliability improvement process employing the analyzing frame. Methods: This paper suggests Reliability-Cost Matrix (R-C Matrix) and Operational Reliability & Cost Index (ORCI) as a tool for reliability evaluation. Results: KOREIP(KAI's Operational Reliability Evaluation and Improvement Process) is developed employing Reliability-Cost Matrix and Operational Reliability & Cost Index. Conclusion: KOREIP provides a process and its activities based on Reliability-Cost Matrix frame. The process and activities leads reliability improvement of aerospace electronic equipments by means of categorizing and follow-up action based on the concept of frame.

Evaluation of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Cho, S.Y.;Kim, Y.W.;Oh, S.H.;Park, C.B.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

RELIABILITY DEMONSTRATION OF PROPULSION SYSTEM OF SPACE LAUNCH VEHICLE

  • Cho Sang-Yeon;Kim Yong-Wook;Oh Seung Hyub;Park Chan-Bin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.341-343
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

A Study on the Reliability of Space Launch Vehicle (우주발사체 신뢰성 분석기법에 관한 연구)

  • Yoo, Seung-Woo;Park, Keun-Young;Lee, Kyung-Chol;Lee, Sang-Jun
    • Journal of Applied Reliability
    • /
    • v.4 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • Reliability program is essential to the development of space systems like launch vehicles and satellites, as they are non-repairable after launch and the failure of a launch vehicle resulted in catastrophic consequences for the mission. Foreign advanced space organizations have developed and implemented their own reliability management programs for launch vehicles from the conceptual design stage to the detail processes for the individual components, procedures and test reports. A study on the launch failures and the reliability analysis methods for one-shot devices contained in this paper will contribute to the reliability improvement for Korean launch vehicle and components.

  • PDF

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.