• Title/Summary/Keyword: Aerospace

Search Result 12,076, Processing Time 0.036 seconds

RF ENVIRONMENT TEST ON A PROPOSED SITE FOR THE SENSOR STATION OF THE NEXT GENERATION SATELLITE NAVIGATION SYSTEM, GALILEO: II. THE RESULT OF THE TEST ON THE CANDIDATE SITE IN THE YEAR OF 2007 BY KASI AND ESA (차세대 위성항법체계 갈릴레오 센서스테이션 유치 후보지 전파 수신환경 조사: II. 실제 예정 부지에 대한 2007년 한국천문연구원과 ESA 공동조사 결과)

  • Jo, Jung-Hyun;Comte, Michel;Gonzalez, Moises;Park, Jong-Uk;Lee, Chang-Hoon;Park, Phil-Ho;Hwang, Jung-Wook;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • A RF environmental field test for the proposed Galileo Sensor Station site was done by Alcatel Alenia technical team contracted by European Space Agency (ESA) and the Space Geodesy division of Korea Astronomy and Space Science Institute at the Korean VLBI Hetwork (KVN) site in Tamla University Campus, Jeju from June 21, 2007 to June 24, 2007. Full band and in-band 24 hour observation for radio frequency interference, precise positioning, and multipath on three proposed antenna locations for Galileo signal were executed. The main purpose of this survey is to verify the results of previous test on 2006 by KASI. The preliminary analysis of the results and a full investigation also had been done by ESA under the permission of KASI until the end of July, 2007.

RF ENVIRONMENT TEST ON A PROPOSED SITE FOR THE SENSOR STATION OF THE NEXT GENERATION SATELLITE NAVIGATION SYSTEM, GALILEO: I. THE RESULT OF THE TEST ON THE VICINITY OF KVN TAMLA SITE IN THE YEAR OF 2006 BY KASI (차세대 위성항법체계 갈릴레오 센서스테이션 유치 후보지 전파 수신환경 조사: I. KVN 탐라전파천문대 인근 부지에 대한 2006년 한국천문연구원 조사 결과)

  • Jo, Jung-Hyun;Je, Do-Hyeung;Cho, Sung-Ki;Choi, Byung-Kyu;Baek, Jeong-Ho;Lee, Dae-Kyu;Chung, Hyun-Soo;Lim, Hvung-Chul;Cho, Jung-Ho;Lee, Woo-Kyoung;Jung, Sung-Wook;Park, Jong-Uk;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2008
  • As the next generation of global satellite navigation system, the Galileo project is about to witness an initial orbit validation stage as the successful test of navigation message transmission from Giove-A in 2007. The Space Geodesy division ana the Radio Astronomy division of the Korea Astronomy & Space Science Institute had collaborated on the field survey for the Galileo Sensor Station (GSS) RF environment of the proposed site near Jeju Tamla University from August 3rd to August 5th, 2006. The power spectrums were measured in full-band $(800{\sim}2000MHz)$ and in-band (E5, E6 and L1 band) in frequency domain for 24 hours respectively. Finally, we performed a time domain analysis to characterize strong in-band interference source based on the result of the previous step.

A study on the improvement of Auxiliary Power Unit auto-shutdown of T-50 series aircraft based on analysis of ECU response characteristics (ECU 응답특성 분석을 통한 T-50 계열 항공기 보조동력장치 자동 꺼짐 개선에 관한 연구)

  • Park, Sung-Jae;Yoo, In-Je;Choi, Su-Jin;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.640-646
    • /
    • 2017
  • A GEN TEST of the auxiliary power unit of a T-50 series aircraft is performed as part of the operational test of its emergency power system on the ground before flight. At this time, the auxiliary power unit should be automatically turned off via the response signal of the ECU when power is not normally supplied to the emergency power system. If the correct operation of the emergency power system cannot be confirmed on the ground, it is not possible to proceed with the flight. This kind of defect is a major factor causing the operation rate of the aircraft to be decreased. The defect code identified by the ECU was confirmed as a defect in the inverter. However, the same defect was found after replacing the inverter. This report presents an improved method of identifying the cause of the defect by analyzing the response characteristics of the ECU and emergency power system and allows the ECU to be recognized as the cause of the defect if the inverter does not generate a voltage within a certain time. Also, the application of the improved method confirmed that it can satisfy the output request time of the emergency power system and effectively prevent the auto-shutdown of the auxiliary power unit.

Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution (공간해상도에 따른 위성 영상레이더 위상간섭기법 긴밀도 분석)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • Recently high spatial resolution space-borne Synthetic Aperture Radar (SAR) systems have launched and have been operated successfully. Interferometric SAR (InSAR) processing with the space-based high resolution observations acquired by these systems can provide more detail information for various geodetic applications. Coherence is regarded as a critical parameter in the evaluating the quality of an InSAR pair. In this study, we evaluate the coherence characteristics of high-resolution data acquired by TerraSAR-X (X-band) and ALOS PALSAR (L-band) and intermediate-resolution data acquired by Envisat ASAR (C-band) over western Texas, U.S.A. Our coherence analysis reveals that the high-resolution X-band TSX (3.1 cm) data has a high coherence level (0.3-0.6), similar to that of the L-band ALOS PALSAR data (23.5 cm) in short temporal baselines. Further more, the TSX coherence values are significantly higher than those of the C-band (5.6 cm) Envisat ASAR data. The higher coherence of the TSX dataset is a surprising result, because common scattering theories suggest that the longer wavelength SAR data maintain better coherence. In vegetated areas the shorter wavelength radar pulse interacts mostly with upper sections of the vegetation and, hence, does not provide good correlation over time in InSAR pairs. Thus, we suggest that the higher coherence values of the TSX data reflect the data's high-resolution, in which stable and coherent scatters are better maintained. Although, however, the TSX data show a very good coherence with short temporal baseline (11-33 days), the coherences are significantly degraded as the temporal baselines are increased. This result confirms previous studies showing that the coherence has a strong dependency on the temporal baseline.

Content Analysis-based Adaptive Filtering in The Compressed Satellite Images (위성영상에서의 적응적 압축잡음 제거 알고리즘)

  • Choi, Tae-Hyeon;Ji, Jeong-Min;Park, Joon-Hoon;Choi, Myung-Jin;Lee, Sang-Keun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.84-95
    • /
    • 2011
  • In this paper, we present a deblocking algorithm that removes grid and staircase noises, which are called "blocking artifacts", occurred in the compressed satellite images. Particularly, the given satellite images are compressed with equal quantization coefficients in row according to region complexity, and more complicated regions are compressed more. However, this approach has a problem that relatively less complicated regions within the same row of complicated regions have blocking artifacts. Removing these artifacts with a general deblocking algorithm can blur complex and undesired regions as well. Additionally, the general filter lacks in preserving the curved edges. Therefore, the proposed algorithm presents an adaptive filtering scheme for removing blocking artifacts while preserving the image details including curved edges using the given quantization step size and content analysis. Particularly, WLFPCA (weighted lowpass filter using principle component analysis) is employed to reduce the artifacts around edges. Experimental results showed that the proposed method outperforms SA-DCT in terms of subjective image quality.

Legal implications of missile test moratorium by the North Korea (북한의 미사일발사 실험 유예조치의 법적 의의)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.22 no.1
    • /
    • pp.105-123
    • /
    • 2007
  • The launching of the Taepo-dong 1 on 31 August 1998 by the North Korea was the first case where the diplomatic protests was made against the flight, the purpose of which, the launching State claimed, consisted in space exploration and use. It is the principle regarding the freedom of space exploration and use, as included in the international treaty, that is relevant in applying the various rules and in defining the legal status of the flight. Its legal status, however, was not actually taken into account, as political negotiations leading to the test moratorium has been successful until present day in freezing the political crisis. This implies that the rules of the law lack the validity and logic sufficient in dictating the conduct of the States. This case shows that, in effect, it is not the rule but the politics that is to govern the status of the flight.

  • PDF

An Efficient Symbol Timing Synchronization Scheme for IEEE 802.11n MIMO-OFDM based WLAN Systems (IEEE 802.11n MIMO-OFDM 기반 무선 LAN 시스템을 위한 효율적인 심볼 동기 방법)

  • Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.95-103
    • /
    • 2009
  • An efficient symbol time synchronization scheme for IEEE 802.11n MIMO-OFDM based WLAN systems using cyclic shift diversity (CSD) preamble is proposed. CSD is used to prevent unintentional beamforming when the same preamble signal is transmitted through transmit antennas. However, it is difficult to find a proper starting-point of the OFDM symbol with the conventional algorithms because of time offset by multi-peaks which are result from cross-correlation of received CSD preamble with a known short training symbol. In addition, the performance of symbol time sync. is affected by AGC and packet detection position. In this paper, an optimal symbol time synch. algorithm which is composed of the boundary detection scheme between LTS and OFDM symbols, the verification scheme for enhancement of boundary detection accuracy, and the SNR-varying threshold estimation scheme is proposed. Simulation result show that the proposed algorithm has performance gains of 4.3dB in SNR compared to the conventional algorithms at the rate of 1% sync. failure probability for $2{\times}2$ MIMO-OFDM system and 18dB at 0.1% when maximum frequency offset exists. It also can be applied to $4{\times}4$ MIMO-OFDM system without any modification. Hence, it is very suitable for MIMO-OFDM WLAN systems using CSD preamble.

Military Use of Satellite and Control of Civil Use (인공위성에 대한 군사적 활용 및 통제방안)

  • Kang, Han-Cheol
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.2
    • /
    • pp.159-234
    • /
    • 2005
  • As so clearly have been demonstrated in the Gulf War and Iraq Freedom Fight, along with the civilian space exploration and development, the 'militarization' of aerospace technology and the 'battlefield-worthiness' of space are becoming more and more at issue. Korean peninsula, the last major theatre where the 4 world powers' national interests stand face to face, no doubt is in dire need for understanding and organizing necessary legislations for establishing national security from any space threats, such as satellite imaging, as well as countering against such threats. Compare to United States, Japan and China that have already declared the national security as the purpose of the space development, and equipped themselves with necessary legislations, Korea's legislations fall short of fully appreciating and effectively responding to the significance of military use of outer space and its control. This article will review legislations of leading countries' of space law and space technologies from two different perspectives. After briefly summarizing the problems of Korea's current legislations, particularly with the National Space Development Act (proposal), drafted by Ministry of Science and Technology, in mind, this article reviews and offers certain legislative directions to which Korea should pursuel for national security of outer space.

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.