• Title/Summary/Keyword: Aerosol properties

Search Result 234, Processing Time 0.022 seconds

Investigation of the Optical and Cloud Forming Properties of Pollution, Biomass Burning, and Mineral Dust Aerosol

  • Lee Yong-Seop
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2006.04a
    • /
    • pp.55-56
    • /
    • 2006
  • This thesis describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this thesis, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based tandem differential mobility analyzer was used for the first time during this campaign to examine the size-resolved hygroscopic properties of particles having diameters between 40 and 586 nm. Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth are measured in College Station, TX to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted CCN concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients are calculated at a wavelength of 550 nm.

  • PDF

Atmospheric Aerosol Optical Properties in the Korean Peninsula

  • Oh, Sung-Nam;Sohn, Byung-Ju;Chung, Hyo-Sang;Park, Ki-Jun;Park, Sang-Soon;Hyun, Myung-Suk
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.423-423
    • /
    • 2003
  • The radiative properties of atmospheric aerosol are determined by the mass and chemical characteristics, and optical properties such as aerosol optical depth (AOD), ngstr m parameter ( $\alpha$) and single scattering albedo (SSA). In particular these aerosol optical properties also determine surface temperature perturbation that may give some information in understanding the regional atmospheric radiative forcing. For understanding the radiative forcing and regional surce of aerosol, this paper summarizes and compares the aerosol optical properties results from and compares the atmospheric aerosol optical properties results from two different experiments: Anmyeon 2000 and Jeju 2001. Korea Global Atmosphere Watch Observatory (KGAWO) at Anmyeon island and ACE-Asia super-site at Gosan Jeju island have measured the radiations and aerosols since the year of 2000. The sites are located in the mid-west and south of Korea peninsula where it is strongly affected by the Asian dust coming from China region in every spring. Aerosol optical properties over both sites were measured through the ground-based sun and sky radiometers were analyzed for understanding the radiation and climate properties. Number concentration and chemical components of aerosol were additionally analyzed for the source estimation in the transportation. The frequency distributions of aerosol optical depth are rather narrow with a modal vaiue of 0.38 at both sites. However, the distributions of show one peak (1.13) at Jeju but two peaks (0.63 and 1.13) at Anmyeon. In the cases of Anmyeon, one peak around 0.63 corresponds to relatively dust-free cases, and the second peak around 1.13 characterizes the situation when Asian dust is presented. The correlation between AOD and resulted high correlation on the wide range with high values of optical depth at Anmyeon, otherwise a narrow range of with moderate to low AOD at Jeju. In dust free condition SSA decrease with waveleneth while in the presence of Asian dust SSA either stays neutral or increases slightly with wavelength. The change of surface temperature shows the stronger positive correlations with aerosol optical depth increase at Anmyeon than Jeju. In the chemical properties the aerosol are related to high concentrations in inorganic matters, SO$^4$, NO$_3$, CA2+ in fine and coarse.

  • PDF

Aerosol Size Distributions and Optical Properties during Severe Asian Dust Episodes Measured over South Korea in Spring of 2009-2010 (2009-2010년 봄철 심한 황사 사례에 대한 에어러솔 크기 분포와 광학적 특성)

  • Kang, Dong-Hun;Kim, Jiyoung;Kim, Kyung-Eak;Lim, Byung-Sook
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.367-379
    • /
    • 2012
  • Measurements of $PM_{10}$ mass concentration, aerosol light scattering and absorption coefficients as well as aerosol size distribution were made to characterize the aerosol physical and optical properties at the two Korean WMO/GAW regional stations, Anmyeondo and Gosan. Episodic cases of the severe Asian dust events occurred in spring of 2009-2010 were studied. Results in this study show that the aerosol size distributions and optical properties at both stations are closely associated with the dust source regions and the transport routes. According to the comparison of the $PM_{10}$ mass concentration at both stations, the aerosol concentrations at Anmyeondo are not always higher than those at Gosan although the distance from the dust source region to Anmyeondo is closer than that of Gosan. The result shows that the aerosol concentrations depend on the transport routes of the dust-containing airmass. The range of mass scattering efficiencies at Anmyeon and Gosan was 0.50~1.45 and $0.62{\sim}1.51m^2g^{-1}$, respectively. The mass scattering efficiencies are comparable to those of the previous studies by Clarke et al. (2004) and Lee (2009). It is noted that anthropogenic fine particles scatter more effectively the sunlight than coarse dust particles. Finally, we found that the aerosol size distribution and optical properties at Anmyeondo and Gosan show somewhat different properties although the samples for the same dust_episodic events are compared.

A Modeling Study on Aerosol Property Changes due to Sea-Salts (해염성분에 의한 에어로솔 물성변화 모사연구)

  • 김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2000
  • Effects of sea-salts on the properties of aerosol collected in a coastal region were studied by applying a gas-particle equilibrium model SCAPE to the measurement data from Korea Cheju Island in summer 1994. It was found that the observed higher ammonium concentrations in fine particles (PM2.5) than in TSP were caused by forced evaporation of ammonium in coarse fraction of aerosol by sea-salts and the degree of evaporation was quantified through an application of SCAPE. By subtracting the sea-salt fraction from the measured concentra-tions the changes of aerosol property were also studied. The concentrations of nitrate at both TSP and PM2.5 decreased when alkaline sea-salt fraction was removed from the measured data. Estimates of aerosol acidity increased for most samples with sea salt loadings, However in some cases with high mass fractions of sea-salt components the aerosol acidity of PM2.5 decreased slightly. This is though to be related with the formation of solid salt with the removal of sea-salts.

  • PDF

Temporal Variations in Optical Properties and Direct Radiative Forcing of Different Aerosol Chemical Components in Seoul using Hourly Aerosol Sampling (서울지역 시간별 에어로솔 자료를 이용한 화학성분별 광학특성 및 직접 복사강제력의 시간 변화 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Temporal variations of optical properties of urban aerosol in Seoul were estimated by the Optical Properties of Aerosols and Clouds (OPAC) model, based on hourly aerosol sampling data in Seoul during the year of 2010. These optical properties were then used to calculate direct radiative forcing during the study period. The optical properties and direct radiative forcing of aerosol were calculated separately for four chemical components such as water-soluble, insoluble, black carbon (BC), and sea-salt aerosols. Overall, the coefficients of absorption, scattering, and extinction, as well as aerosol optical depth (AOD) for water-soluble component predominated over three other aerosol components, except for the absorption coefficient of BC. In the urban environment (Seoul), the contribution of AOD (0.10~0.12) for the sum of OC and BC to total AODs ranged from 23% (spring) to 31% (winter). The diurnal variation of AOD for each component was high in the morning and low in the late afternoon during the most of seasons, but the high AODs at 14:00 and 15:00 LST in summer and fall, respectively. The direct negative radiative forcing of most chemical components (especially, $NO_3{^-}$ of water-soluble) was highest in January and lowest in September. Conversely, the positive radiative forcing of BC was highest in November and lowest in August due to the distribution pattern of BC concentration.

Retrieval of LIDAR Aerosol Parameter Using Sun/Sky Radiometer at Gangneung, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho;Lee, Kyu-Tae
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.175-185
    • /
    • 2017
  • The aerosol optical properties such as depolarization ratio (${\delta}$) and aerosol extinction-to-backscatter ratios (S, LIDAR ratio) and ${\AA}ngstr{\ddot{o}m$ exponent (${\AA}$) derived from measurement with AERONET sun/sky radiometer at Gangneung-Wonju National University (GWNU), Gangneung, Korea ($37.77^{\circ}N$, $128.87^{\circ}E$) during a winter season (December 2014 - February 2015) are presented. The PM concentration measurements are conducted simultaneously and used to identify the high-PM events. The observation period was divided into three cases according to the PM concentrations. We analysed the ${\delta}$, S, and ${\AA}$ during these high PM-events. These aerosol optical properties are calculated by the sun/sky radiometer data and used to classify a type of aerosols (e.g., dust, anthropogenic pollution). The higher values of ${\delta}$ with lower values of S and ${\AA}$ were measured for the dust particles. The mean values of ${\delta}$, S, and ${\AA}$ at 440-870 nm wavelength pair (${\AA}_{440-870}$) for the Asia dust were 0.19-0.24, 36-56 sr, and 0.48, respectively. The anthropogenic aerosol plumes are distinguished with the lower values of ${\delta}$ and higher values of ${\AA}$. The mean values of spectral ${\delta}$ and ${\AA}_{440-870}$ for this case varied 0.06-0.16 and 1.33-1.39, respectively. We found that aerosol columnar optical properties obtained from the sun/sky radiometer measurement are useful to identify the aerosol type. Moreover, the columnar aerosol optical properties calculated based on sun/sky radiometer measurements such as ${\delta}$, S, and ${\AA}$ will be further used for the validation of aerosol parameters obtained from LIDAR observation as well as for quantification of the air quality.

Characterization of Optical Properties of Long-range Transported Asian Dust in NorthEast Asia (동북아시아 지역에서 황사의 중장거리 이동에 따른 광학적 특성 변화 분석)

  • Noh, Youngmin;Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.243-251
    • /
    • 2013
  • The optical properties of long-range transported Asian dust were studied by the satellite observations and Sun/sky radiometer measurements from the Aerosol Robotic Network(AERONET) in Northeast Asia. The movement of Asian dust from source regions to downwind areas was tracked by the Ozone Monitoring Instrument(OMI) derived aerosol product imagery. The optical properties of Asian dust were classified for geographical locations, which are source regions such as deserts area in Dunhuang and Inner Mongolia, downwind areas such as Yulin and Beijing, and long-range transported regions such as Korea(Anmyon and Gosan) and Japan(Noto). In general, relatively higher aerosol mass loadings with larger aerosol particles at desert regions were found. Aerosol Optical Depth(AOD) decreased significantly in downwind areas and long-range transported areas, which was accompanied by increased Angstrom exponents. This indicates the effects of aerosol mixing with various pollutants during transport of Asian dust plume on aerosol optical properties. Moreover, relatively high Single-Scattering Albedo(SSA) at 440 nm values ranging from 0.90 - 0.96 and increasing tendency of SSA with wavelength were observed at source region. The spectral dependence of SSA decreased during long-range transport.

Product and Properties of Embedded Capacitor by Aerosol Deposition (Aerosol Deposition에 의한 Embedded Capacitor의 제조 및 특성 평가)

  • Yoo, Hyo-Sun;Cho, Hyun-Min;Park, Se-Hoon;Lee, Kyu-Bok;Kim, Hyeong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.313-313
    • /
    • 2008
  • Aerosol Deposition(AD) method is based on the impact consolidation phenomenon of ceramic fine particles at room temperature. AD is promising technology for the room temperature deposition of the dielectrics thin films with high quality. Embedding of passive components such as capacitors into printed circuit board is becoming an important strategy for electronics miniaturization and device reliability, manufacturing cost reduction. So, passive integration using aerosol deposition. In this study, we examine the effects of the characteristics of raw powder on the thickness, roughness, electrical properties of $BaTiO_3$ thin films. Thin films were deposited on the copper foil and copper plate. Electrical and material properties was investigated as a change of annealing temperature. We final aim the effects of before and after of laminated on the electrical properties and suit of embedded capacitor.

  • PDF

Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8 (일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Chan, P.W.
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.681-691
    • /
    • 2016
  • Using various satellite measurements in UV, visible and IR, diverse algorithms to retrieve aerosol information have been developed and operated to date. Advanced Himawari Imager (AHI) onboard the Himawari 8 weather satellite was launched in 2014 and has 16 channels from visible to Thermal InfRared (TIR) in high temporal and spatial resolution. Using AHI, it is very valuable to retrieve aerosol optical properties over dark surface to demonstrate its capability. To retrieve aerosol optical properties using visible and Near InfRared (NIR) region, surface signal is very important to be removed which can be estimated using minimum reflectivity method. The estimated surface reflectance is then used to retrieve the aerosol optical properties through the inversion process. In this study, we retrieve the aerosol optical properties over dark surface, but not over bright surface such as clouds, desert and so on. Therefore, the bright surface was detected and masked using various infrared channels of AHI and spatial heterogeneity, Brightness Temperature Difference (BTD), etc. The retrieval result shows the correlation coefficient of 0.7 against AERONET, and the within the Expected Error (EE) of 49%. It is accurately retrieved even for low Aerosol Optical Depth (AOD). However, AOD tends to be underestimated over the Beijing Hefei area, where the surface reflectance using the minimum reflectance method is overestimated than the actual surface reflectance.

Aerosol Mass Spectrometer (AMS)-Based Real-Time Physicochemical Characterization of Atmospheric Aerosols

  • Kim, Donghwi
    • Mass Spectrometry Letters
    • /
    • v.13 no.2
    • /
    • pp.27-34
    • /
    • 2022
  • Atmospheric aerosols have become a major environmental concern because of their adverse effects on human health, air quality, and climate change. Over the last few decades, several mass spectrometry (MS)-based techniques have been developed and applied in the field of atmospheric aerosol research. Particularly, real-time measurement of ambient aerosols using an aerosol mass spectrometer (AMS) has become one of the most powerful tools for aerosol chemistry. This review provides a brief description of AMS and its applications for understanding the physicochemical properties of atmospheric aerosols, as well as its sources and evolution processes.