• Title/Summary/Keyword: Aerosol charger

Search Result 21, Processing Time 0.024 seconds

Design and Performance Evaluation of a Faraday Cage and an Aerosol Charger (패러데이 케이지와 에어로졸 하전기의 설계 및 성능평가)

  • Ji, Jun-Ho;Bae, Kwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.315-323
    • /
    • 2004
  • An electrical cascade impactor is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. A Faraday cage and an aerosol charger, which are basic components of the electrical cascade impactor, were designed and evaluated in this study. The low-level current response of the Faraday cage was investigated with changing particle size and air flow rate by using sodium chloride (NaCl) particles. The response of the prototype Faraday cage was very similar to that of a commercial aerosol electrometer (TSI model 3068) within ${\pm}$5% for singly-charged particles. The response linearity of the prototype Faraday cage could be extended up to flow rate of 30 L/min. For the performance evaluation of the aerosol charger the monodisperse liquid dioctyl sebacate (DOS) particles, with diameters of 0.1∼0.8$\mu\textrm{m}$, were generated using spraying from an atomizer followed by evaporation-condensation process. Typical performance parameters of the aerosol charger such as P$.$n, wall loss, and elementary charges per particle were evaluated. The performance of the prototype aerosol charger was found to be close to that of the aerosol charger used in an electrical low pressure impactor (ELPI, Dekati).

Approach to Characterization of a Diode Type Corona Charger for Aerosol Size Measurement

  • Intra Panich;Tippayawong Nakorn
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.196-203
    • /
    • 2005
  • A semi-empirical method to determine the electrostatic characteristics of a diode type corona aerosol charger based on ion current measurement and electrostatic charging theory was presented. Results from mathematical model were in agreement with those from experimental investigation of the charger. Current-voltage characteristics, $N_{i}t$ product and charge distribution against aerosol size were obtained. It was shown that the space charge was significant and must be taken into account at high ion number concentration and low flow rate. Additionally, significant particle loss was evident for particles smaller than 20 nm in diameter where their electrical mobility was high. Increase in charging efficiency may be achieved by introducing surrounding sheath flow and applying AC high voltage. Overall, the approach was found to be useful in characterizing the aerosol charger.

Design and Performance Evaluation of a Diode Type Corona Charger for Real-Time Measurement of the Submicron Aerosol (실시간 미세입자 측정을 위한 다이오드형 코로나 하전기의 설계 및 성능평가)

  • Cho, Myung-Hoon;Ji, Jun-Ho;Park, Dong-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1066-1074
    • /
    • 2004
  • With a diode corona charger, which is a component of ELPI(Electrical Low Pressure Impactor), aerosol particles are charged to make electrical detection possible before they are collected by the impactor. We designed and evaluated two cylindrical corona chargers, each of which had a central corona needle electrode. For the performance evaluation of each corona charger the polydisperse dioctyl sebacate(DOS) particles, with diameters of 0.1∼0.8 $\mu$m and NaCl particles, smaller than 0.1$\mu$m, were used. The particles were then led through an electrostatic classifier (TSI model 3081) to classify monodisperse aerosol with minimal size deviation. After evaluating the wall loss of the particles in the corona charger, we measured the product of penetration and number of charges, Pㆍn, to evaluate the corona charger efficiency at high positive voltages of 4, 5, 6 kV.

Investigation on the Electrical Discharge Characteristics of a Unipolar Corona-Wire Aerosol Charger

  • Intra, Panich;Yawootti, Artit;Vinitketkumnuen, Usanee;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.556-562
    • /
    • 2011
  • In the present study, a simple corona-wire charger for unipolar diffusion charging of aerosol particles is designed, constructed, and characterized. Experimental characterizations of the electrostatic discharge in terms of current-voltage relationships of positive and negative coronas of the corona-wire charger are also presented and discussed. The charging current and ion concentration in the charging zone increased monotonically with corona voltage. The negative corona showed higher current than the positive corona. At the same corona voltages, the current in the discharge zone is about 600 times larger than the charging current. The ion number concentrations ranged within approximately $5.0{\times}10^{10}$ to $1.24{\times}10^{16}$ and $4.5{\times}10^{12}$ to $2{\times}10^{16}$ ions/$m^3$ in the discharge and charging zones, respectively. A numerical model is used to predict the behavior of the electric potential lines. Numerical results of ion penetration through the inner electrode are in good agreement with the experimental results.

Corona Discharge Characteristics and Particle Losses in a Unipolar Corona-needle Charger Obtained through Numerical and Experimental Studies

  • Intra, Panich;Yawootti, Artit;Rattanadecho, Phadungsak
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2021-2030
    • /
    • 2017
  • In this paper, the unipolar corona-needle charger was developed and its capabilities were both numerically and experimentally investigated. The experimental corona discharges and particle losses in the charger were obtained at different corona voltage, aerosol flow rate and particle diameter for positive and negative coronas. Inside the charger, the electric field and charge distribution and the transport behavior of the charged particle were predicted by a numerical simulation. The experimental results yielded the highest ion number concentrations of about $1.087{\times}10^{15}ions/m^3$ for a positive corona voltage of about 3.2 kV, and $1.247{\times}10^{16}ions/m^3$ for a negative corona voltage of about 2.9 kV, and the highest $N_it$ product for positive and negative coronas was found to about $7.53{\times}10^{13}$ and $8.65{\times}10^{14}ions/m^3$ s was occurred at the positive and negative corona voltages of about 3.2 and 2.9 kV, respectively, and the flow rate of 0.3 L/min. The highest diffusion loss was found to occur at particles with diameter of 30 nm to be about 62.50 and 19.33 % for the aerosol flow rate of 0.3 and 1.5 L/min, respectively, and the highest electrostatic loss was found to occur at particles with diameters of 75 and 50 nm to be about 86.29 and 72.92 % for positive and negative corona voltages of about 2.9 and 2.5 kV, respectively. The numerical results for the electric field distribution and the charged particles migration inside the charger were used to guide the description of the electric field and the behavior of charged particle trajectories to improve the design and refinement of a unipolar corona-needle charger that otherwise could not be seen from the experimental data.

Particle collection performance of a separated two-stage electrostatic precipitator for subway air purification (지하철 공기질 개선을 위한 분리형 2단 전기집진기의 집진 특성 분석)

  • Kim, Ye-Sle;Lee, Yeawan;Kim, Yong-Jin;Han, Bangwoo;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.119-130
    • /
    • 2020
  • In this study, we developed a separated two-stage electrostatic precipitator applicable in a subway air conditioning system. We studied the characteristics of collection efficiency of 0.3 ㎛ particle and ozone generation at different charger sizes and gaps of collector plates. Also, we compared the performance of the two-stage ESP to the MERV 10 filter with the removal efficiency of 10% used in actual subway air conditioning system. The maximum collection efficiency of 0.3 ㎛ particle was 93% at A charger (600 mm×250 mm×600 mm) and 84% at B charger (330 mm×280 mm×330 mm). Especially, with voltages applied to chargers with collection efficiency of about 80% or more, the ozone concentration of two different chargers was 5 ppb to 35 ppb. Finally, the filter quality of the collector developed in this study was 400 times higher than that of the MERV 10 filter. Therefore, it was concluded that the two-stage ESP could be a promising PM removal device suitable for subway air conditioning system.

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines (선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구)

  • Younghun Kim;Gunhee Lee;Kee-Jung Hong;Yong-Jin Kim;Hak-Jun Kim;Inyong Park;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.101-110
    • /
    • 2023
  • In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge (배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율)

  • Kang, Suk-Hoon;Byeon, Jung-Hoon;Ji, Jun-Ho;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1435-1440
    • /
    • 2003
  • Although Dielectric Barrier Discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs(Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by electrostatic precipitator(ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl($20{\sim}100$ nm) and DOS($50{\sim}800$ nm) were generated by tube furnace and atomizer, respectively. For experimental conditions of 60 Hz, 11 kV, and 60 lpm, the particle collection efficiency for the hybrid system comprising DBD charger and ESP was over 85 %, based on the number of particles captured.

  • PDF

The Unipolar Charging Characteristics of Submicron Particles by Using an Indirect Photoelectric Charging (간접 광대전에 의한 서브 마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2003
  • A new unipolar aerosol charger was developed by using an indirect photoelectric charging. The charger consists of two coaxial tubes, the inner UV lamp wrapped with stainless mesh and the outer Al cylinder. In this study, the effects of flow rate, particle size, and electric field were examined to search the optimal charging conditions with experimental and numerical methods. Monodisperse NaCl particles were fed into an annular space and the particles were charged by negative ions generated from Al plate exposed to the UV light. According to experimental results, the average number of elementary charge on particles increases from 2.5 to 5.5 as particle size increases from 50nm to 130nm at 2.5 L/min and 100V. The average number of elementary charge on particles was maximized at 25V as the electric potential between the stainless mesh and Al plate was varied from 0V to 400V.

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.