• Title/Summary/Keyword: Aerosol Deposition Method

Search Result 89, Processing Time 0.033 seconds

Investigation of Growth Mechanism of Polymer, Ceramic and Metal Thick Films in Aerosol Deposition Method (Aerosol Deposition Method에 있어서 금속, 폴리머, 세라믹 후막의 성장 메커니즘 고찰)

  • Lee, Dong-Won;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.346-346
    • /
    • 2008
  • 최근 디지털 컨버젼스에 의해서 정보 단말기 network가 디지털 기술을 기반으로 유기적으로 융 복합화 되고 있으며 BT, NT, ET, IT의 융합 기술의 필요성이 점차적으로 증대되고 있다. 이러한 환경 하에서 다양한 정보 및 서비스의 송신 및 수신이 가능한 휴대 단말기의 필요성에 부응하여 기존의 전화 기능, 카메라, DMB 이외에도 홈 네트워크, mobile internet 등 더욱 다양한 기능들이 요구되고 있다. 종래에는 수동 부품과 능동 부품의 실장을 별개로 추진했으나 최근에는 수동 및 능동 부품을 하나의 패키지 내에 실장 가능하도록 하는 3-D Integration을 추진하고 있다. 지금까지 여러 부품들을 실장 시키기 위한 공정들의 대부분은 높은 온도에서 공정이 이루어졌으나 여러 부품들을 손상 없이 집적화하고 실장하기 위해서는 저온화 공정이 필요하다. 최근 많은 저온 공정 중에서 Aerosol Deposition Method는 상온에서 세라믹 후막을 성막할 수 있어 가장 주목받고 있는 공정중의 하나이다. 본 연구에서는 3-D Integration을 실현하기 위해 이종 접합에 유리하고 상온에서 성막 공정이 이루어지는 Aerosol Deposition Method를 이용하여 금속 기판 위에 금속, 폴리머, 세라믹 후막을 성막시켰다. 기판 재료로는 Cu 기판을 사용하였으며 출발 파우더로는 Polyimide 파우더와 $Al_2O_3$ 파우더, Ag 파우더를 사용하였으며 이종 접합간의 메커니즘의 양상을 보기 위해 같은 조건에서 이종 접합간의 성막률을 비교하였으며 FE-SEM으로 미세 구조를 관찰하였다. 또한 기판의 표면 거칠기에 따른 메커니즘의 양상을 연구하였다.

  • PDF

The Formation of Absorption Layer for the CIGS Solar Cell by Aerosol Deposition Method (Aerosol Deposition 법을 이용한 CIGS 태양전지의 광흡수층 형성)

  • Kim, In Ae;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.909-914
    • /
    • 2013
  • CIGS is one of thin film solar cell and has been studied so much, because of the possibility of low price and high efficiency. Until now, co-evaporation and sputtering were typical method to prepare CIGS absorption layer, and a few company commercialized solar cell by these method. However, non-vacuum process which has been studied for long time has not been progressed, though the merit of low price. Especially, aerosol deposition method has not been reported, because it is difficult to prepare a large quantity of various CIGS powder. In this study, CIGS powder was synthesized by mechanochemical method and CIGS absorption layer was deposited by aerosol deposition method. The thickness of the CIGS layer was controlled by the number of deposition and the surface roughness of it was affected by the amount of flow gas. And, also, I-V curve of it appeared metallic property in the case of 'as deposition'. After heat treatment in Se-rich atmosphere, the electrical property of it changed to a semiconductor. CdS and transparent conduction layer were formed by a typical method on it for solar cell. The efficiency of cell was appeared 0.19%. Though the efficiency was low because of the disharmony in the after-process, it was conformed that CIGS solar cell could be prepared by aerosol deposition.

Various Dielectric Thick Films for Co-Integration of Passive and Active Devices by Aerosol Deposition Method (Aerosol Deposition Method에 의한 수동소자와 능동소자의 동시 직접화를 위한 다양한 유전체 후막)

  • Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.348-348
    • /
    • 2008
  • In recent, the concept of system-on-package (SOP) for highly integrated multifunctional systems has been paid attention to for the miniaturization and high frequency of electronic devices. In order to realize SOP, co-integration of passive devices, such as capacitors, resistors and inductors, and active devices should be achieved. If ceramic thick films can be grown at room temperature, we expect to be able to overcome many problems in conventional fabrication processes. So, we focused on the aerosol deposition method (ADM) as room temperature fabrication technology. ADM is a novel ceramic coating method based on the Room Temperature Impact Consolidation (RTIC) phenomena. This method has a wide range potential for fabrication of co-integration of passive and active devices. In this paper, I will present the future potential of ADM introducing various ceramic dielectric thick films for the integration of electronic ceramics.

  • PDF

The Effect of the Spray-Dried Ceramic Granules' Compressive Strength on the Aerosol Deposition method (분무건조된 세라믹 과립분말의 압축강도가 에어로졸 데포지션 공정에 미치는 효과)

  • Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Ahn, Cheol-Woo;Choi, Joon-Hwan;Park, Dong-Soo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • Recently, Aerosol Deposition method has attracted considerable attention because of its advantages to produce ceramic coatings on various substrates at room temperature. This method is strongly dependent on the raw powder, which should have high mobility with carrier gas and moderate mechanical strength to be crushed onto the substrate. In this report, the effects of the ceramic granules' compressive strength on the ceramic coating formation are discussed. The ceramic granules were prepared by spray-drying method and heat treated at various temperatures. It was found that at the moderate mechanical strength of ceramic granules gave more effective film formation behavior during Aerosol Deposition method.

Characterization of $Al_2O_3$, Thin Film Deposited by Aerosol Deposition Method (에어로졸 증착법에 의한 $Al_2O_3$ 박막의 증착 및 특성 평가)

  • Cho, Hyun-Min;Kim, Hyeong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.24-24
    • /
    • 2007
  • Aerosol deposition(AD) method is a emerging technology for the room temperature deposition of the dielectric thin films with high quality. In this study, $Al_2O_3$ thin films were deposited by aerosol deposition method directly from raw powders. To get uniform and smooth film surface, Process parameters such as gas consumption rate, nozzle-substrate distance and vibration speed were optimized. From XRD results, $Al_2O_3$ thin films have the same crystal structures with starting powders. $Al_2O_3$ thin films also showed dense microstructure. Electrical properties of the thin films were also investigated.

  • PDF

Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method (Aerosol Deposition 법을 이용한 광촉매 $TiO_2$ 박막 제조)

  • Choi Byung-Kyu;Min Seok-Hong;Kim Jong-Oh;Kang Kyong-Tae;Choi Won-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.55-59
    • /
    • 2004
  • We fabricates the $TiO_2$ thin film from anatase phase $TiO_2$ powder having good photocatalytic property using aerosol deposition method at room temperature. Aerosol deposition method, which sprays an aerosol powder with ultrasonic velocity and deposits a thin film on substrate at low temperature, has the advantages of low thermal stress and low cost. To fabricate the $TiO_2$ thin film, the aerosol bath pressure and chamber pressure were 500 torr and 0.4 torr, respectively. The difference of aerosol bath pressure and chamber pressure accelerated the $TiO_2$ nano powder to ultrasonic velocity through the nozzle of $0.4 mm{\times}10 mm$ and $TiO_2$ thin film was finally formed. SS mesh with diameter of 50 mm was used as a substrate to apply the $TiO_2$ thin film to water quality purification. The raw powder was dehydrated for the good dispersion of $TiO_2$ powder. To suppress the formation of second particle, the powder was dispersed for 90 min in alcohol bath by ultrasonic treatment and desiccated. The grain size of $1 {\mu}m$ was observed in $TiO_2$ thin film deposited on SUS mesh by scanning electron microscopy (SEM). The anatase phase of $TiO_2$ thin film was also observed by X-ray diffraction (XRD) and the anatase phase of raw powder was nicely maintained after aerosol deposition. The results are applicable to water treatment filter having photocatalytic reaction.

  • PDF

Fabrication of Er-doped Sodium Borosilicate Glass Films Using Aerosol Flame Deposition Method (Aerosol Flame Deposition법을 이용한 Er-doped Sodium Borosilicate 유리박막 제작에 관한 연구)

  • 문종하;정형곤;이정우;박강희;박현수;김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.117-121
    • /
    • 2000
  • Er-doped sodiumborosilicate glass films for waveguides amplifier were fabricated by Aerosol Flame Deposition(AFD) method. Al2O3 was added to sodium borosilicate glass films to suppress the formation of crystalline phase and control the refractive index. the formation of crystalline phase was suppressed above Al2O3 of 6 wt%. As the amount of Al2O3 increased from 2 to 12 wt% the refractive index of glass films increased lineary from 1.4595 up to 1.4710. After the core of 77SiO2-15B2O3-8Na2O+6 wt%Al2O3+8wt%Er2O3 was coated on the buffer layer of 77SiO2-15B2O3-8Na2O+6 wt%Al2O3, the core was etched by reactive ion etching. The absorption spectrum of 3 cm waveguide amplifier showed two peaks of 1530 and 1550 nm.

  • PDF

Fabrication of Borophosphosilicate Glass Thin Films for Optical Waveguides Using Aerosol Flame Deposition Method (Aerosol Flame Deposition법을 이용한 광도파로용 Borophosphosilicate 유리박막의 제작에 관한 연구)

  • 이정우;정형곤;김병훈;장현명;문종하
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Silica glass films to utilize optical waveguides was fabricated by Aerosol Flame Deposition(AFD) method. As the amount of B2O3 increased in the sol solution of (92-x)SiO2-xB2O3-8P2O5, the thermophoretic deposition rate onto Si substrate was markedly lowered due to vaporizing out of B2O3 and P2O5 during the vaporization and reaction of the aerosol in the flame. GeO2 was added to 62SiO2-30B2O3-8P2O5 in order to control easily the refractive index of glass films. As the amount of GeO2 increased from 2 to 12 wt%, its refractive index increased from 1.4633 up to 1.4716.

  • PDF

Particle deposition on a semiconductor wafer larger than 100 mm with electrostatic effect (정전효과가 있는 100mm보다 큰 반도체 웨이퍼로의 입자침착)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Lee, Kun-Hyung
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Particle deposition on a semiconductor wafer larger than 100 mm was studied experimentally and numerically. Particularly the electrostatic effect on particle deposition velocity was investigated. The experimental apparatus consisted of a particle generation system, a particle deposition chamber and a wafer surface scanner. Experimental data of particle deposition velocity were obtained for a semiconductor wafer of 200 mm diameter with the applied voltage of 5,000 V and PSL particles of the sizes between 83 and 495 nm. The experimental data of particle deposition velocity were compared with the present numerical results and the existing experimental data for a 100 mm wafer by Ye et al. (1991) and Opiolka et al. (1994). The present numerical method took into consideration the particle transport mechanisms of convection, Brownian diffusion, gravitational settling and electrostatic attraction in an Eulerian frame of reference. Based on the comparison of the present experimental and numerical results with the existing experimental results the present experimental method for a 200 mm semiconductor wafer was found to be able to present reasonable data.

  • PDF