• Title/Summary/Keyword: Aeromechanics Modeling

Search Result 2, Processing Time 0.015 seconds

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

Validation for Performance and Hub Vibratory Load Analyses of Lift-offset Coaxial Rotors in Wind-Tunnel Tests (풍동 시험용 Lift-offset 동축 반전 로터에 대한 성능 및 허브 진동 하중 해석의 검증 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.497-505
    • /
    • 2022
  • Performance and hub vibratory load analyses for a lift-offset coaxial rotor are conducted using a rotorcraft comprehensive analysis code, CAMRAD II. The lift-offset coaxial rotor is trimmed to match the total rotor thrust(lift-offset coaxial rotor's thrust) or the individual rotor thrust(upper and lower rotor thrusts, respectively) in this study. The individual rotor's lift and torque, and effective rotor lift to drag ratio for the total rotor are investigated for various advance ratios and lift-offset values. The two result sets with different trim methods are similar to each other and they are correlated well with the wind-tunnel test results. Therefore, the present study using CAMRAD II validates successfully the aeromechanics modeling and analysis techniques for the lift-offset coaxial rotor.