• Title/Summary/Keyword: Aerofoil

Search Result 15, Processing Time 0.04 seconds

A Study of Unsteady Aerodynamic Characteristics of an Accelerating Aerofoil (가속익의 비정상 공력특성에 관한 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.556-561
    • /
    • 2003
  • Flight bodies are subject to highly unstable and severe flow conditions during taking-off and landing periods. In this situation, the flight bodies essentially experience accelerating or decelerating flows, and the aerodynamic characteristics can be completely different from those of steady flows. In the present study, unsteady aerodynamic characteristics of an aerofoil accelerating at subsonic speeds are investigated using a computational method. Two-dimensional, unsteady, compressible Navier-Stokes simulations are conducted with a one-equation turbulence model, Spalart-Allmaras, and a fully implicit finite volume scheme. An acceleration factor is defined to specify the unsteady aerodynamics of the aerofoil. The results show that the acceleration of the subsonic aerofoil generally leads to a variation in aerodynamic characteristics and it is more significant at angles of attack.

  • PDF

Unsteady Aerodynamic Characteristics of an Accelerating or Decelerating Aerofoil

  • Lee, Y-K;Kim, H-D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.347-352
    • /
    • 2004
  • The unsteady aerodynamic characteristics of an aerofoil gradually accelerating or decelerating at subsonic speeds are investigated through two-dimensional, unsteady, compressible Navier-Stokes simulations. An acceleration factor is defined to provide various acceleration or deceleration characters of the time-dependent flow over the aerofoil. The results show that an increase in the absolute value of the non-dimensional acceleration factor leads to a lesser change in the location and range of flow featues such as shockwave and boundary layer separation in a specific time range. Generally, the gradual speed-up and speed-down of the subsonic aerofoil results in different aerodynamic characteristics whose changes are more significant at angles of attack.

  • PDF

Shape morphing and adjustment of pantographic morphing aerofoil section structure

  • Saeed, Najmadeen M.;Kwan, Alan S.K.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.193-207
    • /
    • 2019
  • This study concerns with morphing structures, e.g. as applied in the aerospace industry. A morphing aerofoil structure capable of variable geometry was developed, which was shown to be able to cater for the different aerodynamic requirements at different stages of flight. In this work, the useful and relatively simple method has been applied, which provides a direct method for calculating required morphing shape displacements via finding the most effective bar through calculating bar sensitivity to displacement and calculating set of length actuations for bar assembly to control/adjust shape imperfection of prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation. The technique has been verified by experiments on the physical model of an aerofoil shaped morphing pantographic structure. Overall, experimental results agree well with theoretical prediction. Furthermore, the technique of multi-iteration adjustment was presented that effective in eliminating errors that occur in the practical adjustment process itself. It has been demonstrated by the experiments on the physical model of pantographic morphing structure. Finally, the study discusses identification of the most effective bars with the objective of minimal number of actuators or minimum actuation.

Aerodynamic Characteristics of the Original Airfoil KA2 for the Application of Wind Turbine Blade (풍력 블레이드 적용을 위한 고유익형 KA2의 공력특성)

  • Woo, Young-Jin;Kang, Deok-Hun;Lee, Jang-Ho
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • The new aerofoil, KA2 was designed to apply to the wind turbine blade. For the aerofoil, numerical analysis was performed to review aerodynamic characteristics like lift and drag coefficient. And they are verified with test data using the digital wind tunnel and test samples from 3D printer. The digital wind tunnel was developed to test wing in the small laboratory, and verified with test of NACA0012 airfoil. KA2 aerofoil is asymmetric, and has the thickness ratio of 14%, and 12 degree of AOA at the maximum lift coefficient of 1.3. In this paper, aerodynamic characteristics from numerical and test approaches will be proposed with AOA in detail. Therefore, this aerofoil will be used for the design of wind turbine blade.

Design and Analysis of a Controlled Diffusion Aerofoil Section for an Axial Compressor Stator and Effect of Incidence Angle and Mach No. on Performance of CDA

  • Salunke, Nilesh P.;Channiwala, S.A.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • This paper deals with the Design and Analysis of a Controlled Diffusion Aerofoil (CDA) Blade Section for an Axial Compressor Stator and Effect of incidence angle and Mach No. on Performance of CDA. CD blade section has been designed at Axial Flow Compressor Research Lab, Propulsion Division of National Aerospace Laboratories (NAL), Bangalore, as per geometric procedure specified in the U.S. patent (4). The CFD analysis has been performed by a 2-D Euler code (Denton's code), which gives surface Mach No. distribution on the profiles. Boundary layer computations were performed by a 2-D boundary layer code (NALSOF0801) available in the SOFFTS library of NAL. The effect of variation of Mach no. was performed using fluent. The surface Mach no. distribution on the CD profile clearly indicates lower peak Mach no. than MCA profile. Further, boundary layer parameters on CD aerofoil at respective incidences have lower values than corresponding MCA blade profile. Total pressure loss on CD aerofoil for the same incidence range is lower than MCA blade profile.

Study of the Aerodynamic Characteristics of an Aerofoil in Accelerating Free Streams (가속 유동장에서 발생하는 익형의 공력특성에 관한 연구)

  • Kim, Tae-Ho;Kim, Heuy-Dong;Sohn, Myong-Hwan;Lee, Myeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2115-2120
    • /
    • 2003
  • Many flight bodies are essentially imposed in gradually accelerating and decelerating free streams during taking-off and landing processes. However, the wing aerodynamics occurring in such a stream have not yet been investigated in detail. The objective of the present study is to make clear the aerodynamic characteristics of an aerofoil placed in the accelerating and decelerating free stream conditions. A computational analysis is carried out to solve the unsteady, compressible, Navier-Stokes equations which are discretized using a fully implicit finite volume method. Computational results are employed to reveal the major characteristics of the aerodynamics over the gradually accelerating aerofoil wings.

  • PDF

Study of the Accelerating and Decelerating Free Streams over an Aerofoil (익형을 지나는 가속/감속 유동에 대한 연구)

  • 김태호;윤복현;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.5-8
    • /
    • 2003
  • Many flight bodies are essentially imposed in gradually accelerating and decelerating free streams during taking-off and landing processes. However, the wing aerodynamics occurring in such a stream have not yet been investigated in detail. The objective of the present study is to make clear the aerodynamic characteristics of an aerofoil placed in the accelerating and decelerating free stream conditions. A computational analysis is carried out to solve the unsteady, compressible, Navier-Stokes equations which are discretized using a fully implicit finite volume method. Computational results are employed to reveal the major characteristics of the aerodynamics over the gradually accelerating aerofoil wings.

  • PDF

EFFECTS OF PROCESS PARAMETERS ON GRAIN SIZE DURING ISOTHERMAL FORGING OF A TC6 ALLOY

  • Miaoquan LI;Aiming XIONG;Shankun XUE;Yuanchun LI;Hai LIN;Hairong WANG;Shaobo SU;Lichuang SHEN
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.47-50
    • /
    • 2003
  • Grain size of the $\alpha$ phase is computed during isothermal forging of the TC6 aerofoil blade, by combining FE with the Yada's model of grain size. The present results illustrate the grain size and distribution of the $\alpha$ phase during isothermal forging of the TC6 aerofoil blade' in detail. The computed results show that height reduction, deformation temperature, hammer velocity and friction have significant effect on distribution of the equivalent strain, and that height reduction, deformation temperature and hammer velocity have more significant effect on grain size of the $\alpha$ phase than friction between billet and die.

  • PDF

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 미치는 영향에 대한 실험적 연구)

  • Rim, In-Won;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.661-667
    • /
    • 2001
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7. According to a wake-passing through the cascade, two velocity deficits appear near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit is caused by a periodic wake and the second one appears after some delayed time. The second velocity deficit may be interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreases the duration time of separation appearance and the lesser loss of aerofoil is resulted.

  • PDF