• 제목/요약/키워드: Aeroelastic Response

검색결과 84건 처리시간 0.022초

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

비선형 구조 해석과 공력 해석의 효율적인 연계 알고리즘에 대한 연구 (An efficient method for fluid/structure interaction analysis considering nonlinear structural behavior)

  • 김의영;장성민;이동호;조맹효
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.957-962
    • /
    • 2012
  • 비행체 구조는 공기력에 의해 변형이 발생하고 이 구조의 변형은 다시 공기력의 변화를 유발하므로 비행체 구조 시스템의 고정밀 설계를 위해서는 공력/구조 연계 해석이 필요하다. 그러나 발생하는 변형이 비선형 구조 해석을 요구할 정도로 큰 경우, 선형 시스템에서와 같이 공력 해석과 구조 해석을 순차적으로 반복하는 연계 해석 기법은 바람직하지 않다. 구조적 변형에 따라 변하는 공기력을 충분히 고려하지 못하며, 소요 시간 또한 크기 때문이다. 본 연구는 공력장 내부의 비선형 구조의 거동을 보다 효율적으로 예측할 수 있는 공력/구조 연계 해석 기법을 다룬다. 즉, 비선형 구조 해석 단계 도중에 주기적으로 공력 해석을 통한 외력 업데이트를 수행하는 알고리즘을 제안한다. 또한 고세장비의 유연날개를 가지는 글로벌 호크 모델을 사용하여 여러 가지 기법의 비선형 공력/구조 연계 해석의 결과를 비교하였다.

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

나선형 형상의 초고층건물의 공력감쇠의 특성 (Characteristics of Aerodynamic Damping on Helical-Shaped Super Tall Building)

  • 김원술;이진학;타무라 유키오
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.9-17
    • /
    • 2017
  • 본 연구에서는 변위 및 가속도 응답의 저감 효과에 있어서, 유리한 형상인 $180^{\circ}$ 나선형(Helical $180^{\circ}$) 초고층건물을 대상으로 공력진동실험 수행하여 나선형 초고층건물의 공력감쇠율의 특성을 조사하였다. 공력감쇠율은 RD법(Random decrement technique)을 이용하여 평가하였다. 또한 RD법에서 부분 샘플의 개수와 초기 조건 값의 변화가 공력감쇠율에 어떤 영향을 미치는지 조사하였다. 실험 결과, 최소 2000개 이상의 부분 샘플을 이용하여 앙상블 평균을 적용하면 공력감쇠율의 불규칙한 변동의 폭을 줄일 수 있음을 검증했고, 기존 연구들과도 잘 부합되는 것을 알 수 있었다. 정방형 모형과 $180^{\circ}$ 나선형 모형의 공력감쇠율의 결과를 살펴보면, 풍방향 공력감쇠율은 건물의 형상이 다름에도 불구하고 무차원 풍속에 따른 공력감쇠율은 매우 유사한 경향을 보였다. 한편, 정방형 모형에 대한 풍직각방향의 공력감쇠율은 $180^{\circ}$ 나선형모형의 공력감쇠율의 특성과는 다른 양상을 보이는 것을 알 수 있었다. 특히 풍향 변화에 따른 $180^{\circ}$ 나선형 모형의 Y방향에 대한 공력감쇠율은 풍향의 변화와 상관없이, 전반적으로 0에 가까운 값을 갖는 경향이 나타났고, 무차원 풍속의 증가와 함께 변동의 폭은 작지만 점진적으로 증가하는 경향을 보였다. 초기 조건 값의 변화에 따른 공력감쇠율을 평가한 결과, 초기 조건 값을 "응답의 표준편차" 또는 RD 함수에 대한 최적화 "${\sqrt{2}}{\times}$응답의 표준 편차"를 적용하여 평가한 공력감쇠율은 매우 유사한 결과 값과 분포를 보이는 것으로 나타났다.