The lattice Boltzmann method(LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics since the end of the 90's. In these days, its intrinsic unsteadiness and rapid increase in computing power make the LBM be more applicable for computing flow-induced noise as well as fluid dynamics. The lattice Boltzmann method is a weakly compressible scheme, so we can get information about both aerodynamics and aeroacoustics from single simulation. In this paper, numerical analysis on Aeolian tone noise generated by tandem-twin square cylinders in duct is performed using the LBM. For simplicity, laminar two-dimensional fluid models are used. To verify the validity and accuracy of the current numerical techniques, numerical results for the laminar duct and the cylinder flows are compared with the analytical solution and the measurement, respectively. Then, aerodynamic noise of the twin tandem square cylinders is investigated. It is shown that the aerodynamic noise from the twin tandem square cylinders can be reduced by controlling the distance between the cylinders.
International Journal of Aeronautical and Space Sciences
/
제16권4호
/
pp.571-580
/
2015
In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.
Fins are widely used for roll stabilization of passenger ferries and high performance naval ships, among others. The Coanda effect is noticeable when a jet stream is applied tangentially to a curved wing surface since the jet can augment the lift by increasing the circulation. The Coanda effect has been found useful in various fields of aerodynamics and speculated to have practical applicability in marine hydrodynamics where various control surfaces are used to control motions of ships and the other offshore structures. In the present study, numerical computations have been performed to find proper jet momentum coefficients $C_j$ and trailing edge shapes suitable for the application of the Coanda effect to a stabilizer fin. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack ${\alpha}$ identically coincides with that of the original fin at ${\alpha}\;=\;25^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.1. It is also shown that a fixed type fin stabilizer utilizing the Coanda effect can be implemented without changing the fin angle to actively control the motions of ships and the other offshore structures.
The purpose of this paper is to examine the aerodynamic characteristics of three hypersonic configurations including pure liftbody configuration, pure waverider configuration and liftbody integrated with waverider configuration. Hypersonic forbodies were designed based on these configurations. For the purpose to integrate with ramjet or scramjet, all the forebodies were designed integrated with hypersonic inlet. To better understand the forebody performance, three dimensional flow field calculation of these hypersonic forebodies integrated with hypersonic inlet were conducted in the design and off design conditions. The computational results show that waverider offer an aerodynamic performance advantage in the terms of higher lift-drag ratios over the other two configurations. Liftbody offer good aerodynamic performance in subsonic region. The aerodynamic performance of the liftbody integrated with waverider configuration is not comparable to that of pure waverider in the terms of lift-drag ratios and is not comparable to that of pure liftbody in subsonic. But the liftbody integrated with waverider configuration exhibit good lateral-directional and longitudinal-directional stability characteristics. Both pure waverider and liftbody integrated with waverider configuration can provide relatively uniform flow for the inlet and offer good aerodynamic characteristics in the terms of recovery coefficient of total pressure and uniformity coefficient.
In this study, three airfoil families, NACA, FX and S, in each case three from each series with different shapes were investigated at different angles of attack using Computational Fluid Dynamics (CFD) method. To verify the CFD model, simulation results of the NACA 0012 airfoil was compared against the available experimental data and k-ω SST was used as the turbulence model. Lift coefficients, lift to drag ratios and pressure distributions around airfoils were obtained from the CFD simulations and compared each other. The simulations were performed at three Reynolds numbers, Re=2×105, 1×106and 2×106, and angle of attack was varied between -6 and 12 degrees. According to the results, similar lift coefficient values were obtained for symmetric airfoils reaching their maximum values at similar angles of attack. Maximum lift coefficients were obtained for FX 60-157 and S 4110 airfoils having lift coefficient values around 1.5 at Re=1×106 and 12 degrees of angle of attack. Flow separation occurred close to the leading edge of some airfoils at higher angles of attack, while some other airfoils were more successful in keeping the flow attached on the surface.
본 논문에서는 위치기반 동역학(Position based dynamics, PBD)을 기반으로 하는 프레임워크를 활용하여 풍선 내 공기로 의한 표면의 회전과 변형을 효율적으로 표현할 수 있는 새로운 방법을 제안한다. 기존의 경우 볼륨 형태인 다면체 메쉬(Tetrahedral mesh)를 활용하여 표면 내부를 모델링 하거나 입자 기반의 유체 시뮬레이션을 통하여 공기역학을 계산해야 되지만, 각각의 동역학뿐만 아니라 상호작용까지 고려해야 되기 때문에 계산양이 커서 다양한 분야에서 활용하기 어렵다. 본 논문에서는 이 문제를 효율적으로 풀어내기 위해 공기의 움직임을 파악하기 위한 유체 시뮬레이션을 계산하지 않고도, 풍선 내 바람에 의한 표면 수축 및 확장을 PBD기반으로 풀어내고, 공기가 빠질 때 나타나는 표면의 회전을 효율적으로 계산할 수 있다. 본 논문에서 제안하는 방법은 정점(Vertex)의 개수가 많은 모델에서도 실시간 처리되는 결과를 보여 줄 수 있기 때문에 게임뿐만 아니라 실시간을 요구하는 물리기반 가상환경 구축에 활용될 수 있다.
Dong-tan Station, shared by high-speed railway and urban express railway, is a very complicated underground station having 6 tracks together with barrier and shafts between them, therefore it seems very hard to investigate the aerodynamic effects including the pressure variation and train gust in the station when a high-speed train runs through it. In this study, the aerodynamic effects on the structures and platform passengers when a high-speed train runs through an underground station have been studied using Computational Fluid Dynamics. STAR-CCM+ has been employed for numerical simulation based on Navier-Stokes equation and 2-equation turbulence model and moving mesh scheme supported by STAR-CCM+ has also been used to represent the relative motion between a train and station. Based on the simulation results, the unsteady flow fields in the underground station induced by the high-speed train have been analyzed and the pressures on the PSDs and pressure variation at the platform have quantitatively assessed.
The attitude control of an aircraft is usually fulfilled by means of thrusters at high altitudes. Therefore, the possibility of using also aerodynamic surfaces would produce the advantage of reducing the amount of fuel for the thrusters to be loaded on board. For this purpose, Zuppardi already considered some aerodynamic problems linked to the use of a wing flap in a previous paper. A NACA 0010 airfoil with a trailing edge flap of 35% of the chord, in the range of angle of attack 0-40 deg and flap deflections up to 30 deg was investigated. Computer tests were carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km of Earth Atmosphere. The present work continues this subject, considering the same airfoil and free stream conditions but two flap extensions of 45% and 25% of the chord and two flap deflections of 15 and 30 deg. The main purpose is to compare the influence of the flap dimension with that of the flap deflection. The present analysis is carried out in terms of: 1) percentage variation of the global aerodynamic coefficients with respect to the no-flap configuration, 2) increment of pressure and heat flux on the airfoil lower surface due to the Shock Wave-Shock Wave Interaction (SWSWI) with respect to the same quantities with no SWSWI or in no-flap configuration, 3) flap hinge moment. Issues 2) and 3) are important for the design of the mechanical and thermal protection system and of the flap actuator, respectively. Under the above mentioned test and geometrical conditions, the flap deflection is aerodynamically more effective than the flap extension, because it involves higher variation of the aerodynamic coefficients. However, tests verify that a smaller deflection angle involves the advantage of a smaller increment of pressure and heat flux on the airfoil lower surface, due to SWSWI, as well as a smaller hinge moment.
A forward-facing aerospike attached to a payload fairing of a satellite launch vehicle significantly alters its flowfield and decreases the aerodynamic drag in transonic and low supersonic speeds. The present payload fairing is an axisymmetric configuration and consists of a blunt-nosed body along with a conical section, payload shroud, boat tail and followed by a booster. The main purpose of the present numerical simulations is to evaluate flowfield and assess the performance of aerodynamic drag coefficient with and without aerospike attached to a payload fairing of a typical satellite launch vehicle in freestream Mach number range 0.8 ≤ M∞ ≤ 3.0 and freestream Reynolds number range 33.35 × 106/m ≤ Re∞ ≤ 46.75 × 106/m whichincludes the maximum aerodynamic drag and maximum dynamic conditions during ascent flight trajectory of the satellite launch vehicle. A numerical simulation has been carried out to solve time-dependent compressible turbulent axisymmetric Reynolds-averaged Navier-Stokes equations. The closure of the system of equations is achieved using the Baldwin-Lomax turbulence model. The aerodynamic drag reduction mechanism is analysed employing numerical results such as velocity vector plots, density and Mach contours in conjunction with the experimental flow visualization pictures. The variations of wall pressure coefficient over the payload fairing with and without aerospike are exhibiting different kind of flowfield characteristics in the transonic and low supersonic speeds. The numerically computed results are compared with schlieren pictures, oil flow patterns and measured wall pressure distributions and exhibit good agreement between them.
The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.