• Title/Summary/Keyword: Aerodynamics noise

Search Result 58, Processing Time 0.017 seconds

Modal Test and Finite Element Model Update of Aircraft with High Aspect Ratio Wings (고세장비 항공기의 모드 시험 및 동특성 유한요소모델 개선)

  • Kim, Sang-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.480-488
    • /
    • 2012
  • The aircrafts with high aspect ratio wings made by a composite material have been developed, which enable high energy efficiency and long-term flight by reducing air resistance and structural weight. However, they have difficulties in securing the aeroelastic stability such as the flutter because of their long and flexible wings. The flutter is unstable self-excited-vibration caused by interaction between the structural dynamics and the aerodynamics. It should be verified analytically prior to first flight test that the flutter does not happen in the range of flight mission. Normally, the finite element model is used for the flutter analysis. So it is important to construct the finite element model representing dynamic characteristics similar to those of a real aircraft. Accordingly, in this research, to acquire dynamic characteristics experimentally the modal test of the aircraft with high aspect ratio composite wings was conducted. And then the modal parameters from the finite element analysis(FEA) were compared with those from the modal test. To make analysis results closer to test results, the finite element model was updated by means of the sensitivity analysis on variables and the optimization. Finally, it was proved that the updated finite element model is reliable as compared with the results of the modal test.

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.

A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels (고속철도 터널내 압력파 측정과 공기압 해석모델에 대한 기초연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Hong, Yoo-Jung;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2015
  • The pressure wave formed by the piston effects of the train proceeds within the tunnel when a train enters the tunnel with a high speed. Depending on the condition of tunnel exit, the compression waves reflect at a open end, change to the expansion waves, transfer to tunnel entrance back. Due to interference in the pressure waves and running train, passengers experience severe pressure fluctuations. And these pressure waves result in energy loss, noise, vibration, as well as in the passengers' ears. In this study, we performed comparison between numerical analysis and field experiments about the characteristics of the pressure waves transport in tunnel that appears when the train enter a tunnel and the variation of pressure penetrating into the train staterooms according to blockage ratio of train. In addition, a comparative study was carried out with the ThermoTun program to examine the applicability of the compressible 1-D model(based on the Method of Characteristics). Furthermore examination for the adequacy of the governing equations analysis based on compressible 1-D numerical model by Baron was examined.

Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft (차세대 회전익 기본개념설계/통합해석 프로그램의 개발)

  • Oh, Sejong;Park, Donghoon;Ji, Hyung Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcrafts to overcome the disadvantages of traditional helicopters. For developing these new types of rotorcrafts, the upgraded conceptual design/comprehensive programs are required. In US and Europe, they are already developing new program tools with their technologies and database obtained during more than last half centuries. For us, many academia, research institutes and industrial engineers have experienced and developed core technologies on rotorcrafts (aerodynamics, structural analysis, flight dynamics, and noise analysis etc.) comparable to US and Europe during last couple of decades of developing helicopters and various configurations of rotorcrafts. In this paper, the pros and cons of conceptual design/comprehensive tools currently used in US and Europe have been summarized. Furthermore, the possibilities and problems to develope our own design and analysis tools have been studied.